32

Internal Combustion Engine Parts

1. Introduction.
2. Principal Parts of an I. C. Engine.
5. Piston.
6. Design Considerations for a Piston.
7. Material for Pistons.
8. Piston Head or Crown.
11. Piston skirt.
12. Piston Pin.
13. Connecting Rod.
14. Forces Acting on the Connecting Rod.
15. Design of Connecting Rod.
17. Material and Manufacture of Crankshafts.
18. Bearing Pressures and Stresses in Crankshafts.
20. Design for Centre Crankshaft.
21. Side or Overhung Crankshaft.
22. Valve Gear Mechanism.
23. Valves.
24. Rocker Arm.

32.1 Introduction

As the name implies, the internal combustion engines (briefly written as I. C. engines) are those engines in which the combustion of fuel takes place inside the engine cylinder. The I.C. engines use either petrol or diesel as their fuel. In petrol engines (also called spark ignition engines or S.I engines), the correct proportion of air and petrol is mixed in the carburettor and fed to engine cylinder where it is ignited by means of a spark produced at the spark plug. In diesel engines (also called compression ignition engines or C.I engines), only air is supplied to the engine cylinder during suction stroke and it is compressed to a very high pressure, thereby raising its temperature from 600°C to 1000°C. The desired quantity of fuel (diesel) is now injected into the engine cylinder in the form of a very fine spray and gets ignited when comes in contact with the hot air.

The operating cycle of an I.C. engine may be completed either by the two strokes or four strokes of the
piston. Thus, an engine which requires two strokes of the piston or one complete revolution of the crankshaft to complete the cycle, is known as **two stroke engine**. An engine which requires four strokes of the piston or two complete revolutions of the crankshaft to complete the cycle, is known as **four stroke engine**.

The two stroke petrol engines are generally employed in very light vehicles such as scooters, motor cycles and three wheelers. The two stroke diesel engines are generally employed in marine propulsion.

The four stroke petrol engines are generally employed in light vehicles such as cars, jeeps and also in aeroplanes. The four stroke diesel engines are generally employed in heavy duty vehicles such as buses, trucks, tractors, diesel locomotive and in the earth moving machinery.

32.2 Principal Parts of an Engine

The principal parts of an I.C engine, as shown in Fig. 32.1 are as follows:

The design of the above mentioned principal parts are discussed, in detail, in the following pages.

![Fig. 32.1. Internal combustion engine parts.](image)

32.3 Cylinder and Cylinder Liner

The function of a cylinder is to retain the working fluid and to guide the piston. The cylinders are usually made of cast iron or cast steel. Since the cylinder has to withstand high temperature due to the combustion of fuel, therefore, some arrangement must be provided to cool the cylinder. The single cylinder engines (such as scooters and motorcycles) are generally air cooled. They are provided with fins around the cylinder. The multi-cylinder engines (such as of cars) are provided with water jackets around the cylinders to cool it. In smaller engines, the cylinder, water jacket and the frame are
made as one piece, but for all the larger engines, these parts are manufactured separately. The cylinders are provided with cylinder liners so that in case of wear, they can be easily replaced. The cylinder liners are of the following two types:

1. Dry liner, and 2. Wet liner.

A cylinder liner which does not have any direct contact with the engine cooling water, is known as dry liner, as shown in Fig. 32.2 (a). A cylinder liner which have its outer surface in direct contact with the engine cooling water, is known as wet liner, as shown in Fig. 32.2 (b).

The cylinder liners are made from good quality close grained cast iron (i.e. pearlitic cast iron), nickel cast iron, nickel chromium cast iron. In some cases, nickel chromium cast steel with molybdenum may be used. The inner surface of the liner should be properly heat-treated in order to obtain a hard surface to reduce wear.

32.4 Design of a Cylinder

In designing a cylinder for an I. C. engine, it is required to determine the following values:

1. Thickness of the cylinder wall. The cylinder wall is subjected to gas pressure and the piston side thrust. The gas pressure produces the following two types of stresses:

 (a) Longitudinal stress, and (b) Circumferential stress.
Since these two stressess act at right angles to each other, therefore, the net stress in each direction is reduced.

The piston side thrust tends to bend the cylinder wall, but the stress in the wall due to side thrust is very small and hence it may be neglected.

Let

- \(D_0 \) = Outside diameter of the cylinder in mm,
- \(D \) = Inside diameter of the cylinder in mm,
- \(p \) = Maximum pressure inside the engine cylinder in N/mm\(^2\),
- \(t \) = Thickness of the cylinder wall in mm, and
- \(\nu \) = Poisson’s ratio. It is usually taken as 0.25.

The apparent longitudinal stress is given by

\[
\sigma_l = \frac{\text{Force}}{\text{Area}} = \frac{\pi \times D^2 \times p}{\pi [(D_0)^2 - D^2]} = \frac{D^2 \times p}{(D_0)^2 - D^2}
\]

and the apparent circumferential stress is given by

\[
\sigma_c = \frac{\text{Force}}{\text{Area}} = \frac{D \times l \times p}{2 \pi \times l} = \frac{D \times p}{2 \pi}
\]

\(\therefore \) Net longitudinal stress = \(\sigma_l - \frac{\sigma_c}{\nu} \)

and net circumferential stress = \(\sigma_c - \frac{\sigma_l}{\nu} \)

The thickness of a cylinder wall (\(t \)) is usually obtained by using a thin cylindrical formula, i.e.,

\[
t = \frac{p \times D}{2 \sigma_c} + C
\]

where

- \(p \) = Maximum pressure inside the cylinder in N/mm\(^2\),
- \(D \) = Inside diameter of the cylinder or cylinder bore in mm,
- \(\sigma_c \) = Permissible circumferential or hoop stress for the cylinder material in MPa or N/mm\(^2\). Its value may be taken from 35 MPa to 100 MPa depending upon the size and material of the cylinder.
- \(C \) = Allowance for re boring.

The allowance for re boring (\(C \)) depending upon the cylinder bore (\(D \)) for I.C. engines is given in the following table:

Table 32.1. Allowance for re boring for I.C. engine cylinders.

<table>
<thead>
<tr>
<th>(D) (mm)</th>
<th>75</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C) (mm)</td>
<td>1.5</td>
<td>2.4</td>
<td>4.0</td>
<td>6.3</td>
<td>8.0</td>
<td>9.5</td>
<td>11.0</td>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
</tr>
</tbody>
</table>

The thickness of the cylinder wall usually varies from 4.5 mm to 25 mm or more depending upon the size of the cylinder. The thickness of the cylinder wall (\(t \)) may also be obtained from the following empirical relation, i.e.

\[
t = 0.045D + 1.6 \text{ mm}
\]

The other empirical relations are as follows:

1. Thickness of the dry liner
 \[
 = 0.03D \text{ to } 0.035D
 \]
Thickness of the water jacket wall

\[= 0.032 \, D + 1.6 \text{ mm or } t / 3 \, m \text{ for bigger cylinders and } 3t / 4 \text{ for smaller cylinders} \]

Water space between the outer cylinder wall and inner jacket wall

\[= 10 \text{ mm for a 75 mm cylinder to 75 mm for a 750 mm cylinder or } 0.08 \, D + 6.5 \text{ mm} \]

2. Bore and length of the cylinder. The bore (i.e. inner diameter) and length of the cylinder may be determined as discussed below:

Let

\[P_m = \text{Indicated mean effective pressure in N/mm}^2,\]
\[D = \text{Cylinder bore in mm},\]
\[A = \text{Cross-sectional area of the cylinder in mm}^2,\]
\[= \pi \, D^2 / 4\]
\[l = \text{Length of stroke in metres},\]
\[N = \text{Speed of the engine in r.p.m.},\]
\[n = \text{Number of working strokes per min}\]
\[= N, \text{for two stroke engine}\]
\[= N / 2, \text{for four stroke engine}.\]

We know that the power produced inside the engine cylinder, i.e. indicated power,

\[I.P. = \frac{P_m \times l \times A \times n}{60} \text{ watts}\]

From this expression, the bore (D) and length of stroke (l) is determined. The length of stroke is generally taken as 1.25 \(D \) to 2\(D \).

Since there is a clearance on both sides of the cylinder, therefore length of the cylinder is taken as 15 percent greater than the length of stroke. In other words,

Length of the cylinder, \(L = 1.15 \times \text{Length of stroke} = 1.15 \, l \)

Notes: (a) If the power developed at the crankshaft, i.e. brake power (B. P.) and the mechanical efficiency (\(\eta_m \)) of the engine is known, then

\[I.P. = \frac{B.P.}{\eta_m} \]

(b) The maximum gas pressure (\(p \)) may be taken as 9 to 10 times the mean effective pressure (\(p_m \)).

3. Cylinder flange and studs. The cylinders are cast integral with the upper half of the crankcase or they are attached to the crankcase by means of a flange with studs or bolts and nuts. The cylinder flange is integral with the cylinder and should be made thicker than the cylinder wall. The flange thickness should be taken as 1.2 \(t \) to 1.4 \(t \), where \(t \) is the thickness of cylinder wall.

The diameter of the studs or bolts may be obtained by equating the gas load due to the maximum pressure in the cylinder to the resisting force offered by all the studs or bolts. Mathematically,

\[\frac{\pi}{4} \times D^2 \times p = n_s \times \frac{\pi}{4} (d_c)^2 \sigma_i, \]

where

\[D = \text{Cylinder bore in mm},\]
\[p = \text{Maximum pressure in N/mm}^2,\]
\[n_s = \text{Number of studs. It may be taken as 0.01} \, D + 4 \text{ to } 0.02 \, D + 4\]
\[d_c = \text{Core or minor diameter, i.e. diameter at the root of the thread in mm},\]
The nominal or major diameter of the stud or bolt \((d) \) usually lies between 0.75 \(t_f \) to \(t_f \), where \(t_f \) is the thickness of flange. In no case, a stud or bolt less than 16 mm diameter should be used.

The distance of the flange from the centre of the hole for the stud or bolt should not be less than \(d + 6 \) mm and not more than \(1.5 \ d \), where \(d \) is the nominal diameter of the stud or bolt.

In order to make a leak proof joint, the pitch of the studs or bolts should lie between \(19\sqrt{d} \) to \(28.5\sqrt{d} \), where \(d \) is in mm.

4. Cylinder head. Usually, a separate cylinder head or cover is provided with most of the engines. It is, usually, made of box type section of considerable depth to accommodate ports for air and gas passages, inlet valve, exhaust valve and spark plug (in case of petrol engines) or atomiser at the centre of the cover (in case of diesel engines).

The cylinder head may be approximately taken as a flat circular plate whose thickness \((t_h) \) may be determined from the following relation:

\[
t_h = D \sqrt{\frac{Cp}{\sigma_c}}
\]

where
- \(D \) = Cylinder bore in mm,
- \(p \) = Maximum pressure inside the cylinder in N/mm²,
- \(\sigma_c \) = Allowable circumferential stress in MPa or N/mm². It may be taken as 30 to 50 MPa, and
- \(C \) = Constant whose value is taken as 0.1.

The studs or bolts are screwed up tightly alongwith a metal gasket or asbestos packing to provide a leak proof joint between the cylinder and cylinder head. The tightness of the joint also depends upon the pitch of the bolts or studs, which should lie between \(19\sqrt{d} \) to \(28.5\sqrt{d} \). The pitch circle diameter \((D_p) \) is usually taken as \(D + 3d \). The studs or bolts are designed in the same way as discussed above.

Example 32.1. A four stroke diesel engine has the following specifications:

- Brake power = 5 kW ; Speed = 1200 r.p.m. ; Indicated mean effective pressure = 0.35 N/mm² ; Mechanical efficiency = 80 %.

Determine: 1. bore and length of the cylinder ; 2. thickness of the cylinder head ; and 3. size of studs for the cylinder head.
Solution. Given: B.P. = 5kW = 5000 W; \(N = 1200 \) r.p.m. or \(n = N / 2 = 600; \) \(p_m = 0.35 \) N/mm\(^2\); \(\eta_m = 80\% = 0.8 \)

1. Bore and length of cylinder

Let

\[D = \text{Bore of the cylinder in mm}, \]
\[A = \text{Cross-sectional area of the cylinder} = \frac{\pi}{4} \times D^2 \text{ mm}^2 \]
\[l = \text{Length of the stroke in m.} \]
\[= 1.5 \, D \text{ mm} = 1.5 \, D / 1000 \text{ m} \](Assume)

We know that the indicated power,

\[I.P = B.P / \eta_m = 5000 / 0.8 = 6250 \text{ W} \]

We also know that the indicated power (I.P.),

\[6250 = \frac{p_m \times A \times n}{60} = \frac{0.35 \times 1.5D \times \pi D^2 \times 600}{60 \times 1000 \times 4} = 4.12 \times 10^{-3} \] \(D^3 \)(\(\because \) For four stroke engine, \(n = N/2) \)

\[\therefore \quad D^3 = 6250 / 4.12 \times 10^{-3} = 1517 \times 10^3 \text{ or } D = 115 \text{ mm} \text{ Ans.} \]

and

\[l = 1.5 \, D = 1.5 \times 115 = 172.5 \text{ mm} \]

Taking a clearance on both sides of the cylinder equal to 15\% of the stroke, therefore length of the cylinder,

\[L = 1.15 \, l = 1.15 \times 172.5 = 198 \text{ say 200 mm} \text{ Ans.} \]

2. Thickness of the cylinder head

Since the maximum pressure (\(p \)) in the engine cylinder is taken as 9 to 10 times the mean effective pressure (\(p_m \)), therefore let us take

\[p = 9 \, p_m = 9 \times 0.35 = 3.15 \text{ N/mm}^2 \]

We know that thickness of the cylinder head,

\[t_h = D \sqrt{\frac{C \cdot p}{\sigma_t}} = 115 \sqrt{\frac{0.1 \times 3.15}{42}} = 9.96 \text{ say 10 mm} \text{ Ans.} \]

...(Taking \(C = 0.1 \) and \(\sigma_t = 42 \text{ MPa} = 42 \text{ N/mm}^2 \))

3. Size of studs for the cylinder head

Let

\[d = \text{Nominal diameter of the stud in mm}, \]
\[d_c = \text{Core diameter of the stud in mm. It is usually taken as 0.84} \, d. \]
\[\sigma_t = \text{Tensile stress for the material of the stud which is usually nickel steel}. \]
\[n_s = \text{Number of studs.} \]

We know that the force acting on the cylinder head (or on the studs)

\[= \frac{\pi}{4} \times D^2 \times p = \frac{\pi}{4} \times (115)^2 \times 3.15 = 32 \, 702 \text{ N} \quad \text{...(i)} \]

The number of studs (\(n_s \)) are usually taken between 0.01 \(D + 4 \) (i.e. 0.01 \times 115 + 4 = 5.15) and 0.02 \(D + 4 \) (i.e. 0.02 \times 115 + 4 = 6.3). Let us take \(n_s = 6 \).

We know that resisting force offered by all the studs

\[= n_s \times \frac{\pi}{4} (d_c)^2 \, \sigma_t = 6 \times \frac{\pi}{4} (0.84d)^2 \times 65 = 216 \, d^2\text{N} \quad \text{...(ii)} \]

...(Taking \(\sigma_t = 65 \text{ MPa} = 65 \text{ N/mm}^2 \))

From equations (i) and (ii),

\[d^2 = 32 \, 702 / 216 = 151 \text{ or } d = 12.3 \text{ say 14 mm} \]
The pitch circle diameter of the studs (D_p) is taken $D + 3d$.

\[D_p = 115 + 3 \times 14 = 157 \text{ mm} \]

We know that pitch of the studs

\[\frac{\pi \times D_p}{n_s} = \frac{\pi \times 157}{6} = 82.2 \text{ mm} \]

We know that for a leak-proof joint, the pitch of the studs should lie between $19\sqrt{d}$ to $28.5\sqrt{d}$, where d is the nominal diameter of the stud.

\[\therefore \text{Minimum pitch of the studs} = 19\sqrt{d} = 19\sqrt{14} = 71.1 \text{ mm} \]

and maximum pitch of the studs

\[= 28.5\sqrt{d} = 28.5\sqrt{14} = 106.6 \text{ mm} \]

Since the pitch of the studs obtained above (i.e. 82.2 mm) lies within 71.1 mm and 106.6 mm, therefore, size of the stud (d) calculated above is satisfactory.

\[\therefore d = 14 \text{ mm} \quad \text{Ans.} \]

32.5 Piston

The piston is a disc which reciprocates within a cylinder. It is either moved by the fluid or it moves the fluid which enters the cylinder. The main function of the piston of an internal combustion engine is to receive the impulse from the expanding gas and to transmit the energy to the crankshaft through the connecting rod. The piston must also disperse a large amount of heat from the combustion chamber to the cylinder walls.

Fig. 32.3. Piston for I.C. engines (Trunk type).
The piston of internal combustion engines are usually of trunk type as shown in Fig. 32.3. Such pistons are open at one end and consists of the following parts:

1. **Head or crown.** The piston head or crown may be flat, convex or concave depending upon the design of combustion chamber. It withstands the pressure of gas in the cylinder.

2. **Piston rings.** The piston rings are used to seal the cylinder in order to prevent leakage of the gas past the piston.

3. **Skirt.** The skirt acts as a bearing for the side thrust of the connecting rod on the walls of cylinder.

4. **Piston pin.** It is also called gudgeon pin or wrist pin. It is used to connect the piston to the connecting rod.

32.6 Design Considerations for a Piston

In designing a piston for I.C. engine, the following points should be taken into consideration:

1. It should have enormous strength to withstand the high gas pressure and inertia forces.
2. It should have minimum mass to minimise the inertia forces.
3. It should form an effective gas and oil sealing of the cylinder.
4. It should provide sufficient bearing area to prevent undue wear.
5. It should disperse the heat of combustion quickly to the cylinder walls.
6. It should have high speed reciprocation without noise.
7. It should be of sufficient rigid construction to withstand thermal and mechanical distortion.
8. It should have sufficient support for the piston pin.

32.7 Material for Pistons

The most commonly used materials for pistons of I.C. engines are cast iron, cast aluminium, forged aluminium, cast steel and forged steel. The cast iron pistons are used for moderately rated
engines with piston speeds below 6 m/s and aluminium alloy pistons are used for highly rated engines running at higher piston speeds. It may be noted that

1. Since the coefficient of thermal expansion for aluminium is about 2.5 times that of cast iron, therefore, a greater clearance must be provided between the piston and the cylinder wall (than with cast iron piston) in order to prevent siezing of the piston when engine runs continuously under heavy loads. But if excessive clearance is allowed, then the piston will develop 'piston slap' while it is cold and this tendency increases with wear. The less clearance between the piston and the cylinder wall will lead to siezing of piston.

2. Since the aluminium alloys used for pistons have high heat conductivity (nearly four times that of cast iron), therefore, these pistons ensure high rate of heat transfer and thus keeps down the maximum temperature difference between the centre and edges of the piston head or crown.

Notes: (a) For a cast iron piston, the temperature at the centre of the piston head \(T_c\) is about 425°C to 450°C under full load conditions and the temperature at the edges of the piston head \(T_e\) is about 200°C to 225°C.

(b) For aluminium alloy pistons, \(T_c\) is about 260°C to 290°C and \(T_e\) is about 185°C to 215°C.

3. Since the aluminium alloys are about three times lighter than cast iron, therefore, its mechanical strength is good at low temperatures, but they lose their strength (about 50%) at temperatures above 325°C. Sometimes, the pistons of aluminium alloys are coated with aluminium oxide by an electrical method.

32.8 Piston Head or Crown

The piston head or crown is designed keeping in view the following two main considerations, i.e.

1. It should have adequate strength to withstand the straining action due to pressure of explosion inside the engine cylinder, and

2. It should dissipate the heat of combustion to the cylinder walls as quickly as possible.

On the basis of first consideration of straining action, the thickness of the piston head is determined by treating it as a flat circular plate of uniform thickness, fixed at the outer edges and subjected to a uniformly distributed load due to the gas pressure over the entire cross-section.

The thickness of the piston head \(t_h\), according to Grashoff’s formula is given by

\[
t_h = \frac{3pD^2}{16\sigma_t} \quad \text{(in mm)} \quad \ldots(i)
\]

where

- \(p\) = Maximum gas pressure or explosion pressure in N/mm\(^2\),
- \(D\) = Cylinder bore or outside diameter of the piston in mm, and
- \(\sigma_t\) = Permissible bending (tensile) stress for the material of the piston in MPa or N/mm\(^2\). It may be taken as 35 to 40 MPa for grey cast iron, 50 to 90 MPa for nickel cast iron and aluminium alloy and 60 to 100 MPa for forged steel.

On the basis of second consideration of heat transfer, the thickness of the piston head should be such that the heat absorbed by the piston due combustion of fuel is quickly transferred to the cylinder walls. Treating the piston head as a flat circular plate, its thickness is given by

\[
t_h = \frac{H}{12.56k(T_c - T_e)} \quad \text{(in mm)} \quad \ldots(ii)
\]

* The coefficient of thermal expansion for aluminium is \(0.24 \times 10^{-6} \text{ m/°C}\) and for cast iron it is \(0.1 \times 10^{-6} \text{ m/°C}\).

** The heat conductivity for aluminium is \(174.75 \text{ W/m°C}\) and for cast iron it is \(46.6 \text{ W/m°C}\).

*** The density of aluminium is \(2700 \text{ kg/m}^3\) and for cast iron it is \(7200 \text{ kg/m}^3\).
where

\[H = \text{Heat flowing through the piston head in kJ/s or watts}, \]
\[k = \text{Heat conductivity factor in W/m/°C. Its value is 46.6 W/m/°C for grey cast iron, 51.25 W/m/°C for steel and 174.75 W/m/°C for aluminium alloys.} \]
\[T_C = \text{Temperature at the centre of the piston head in °C, and} \]
\[T_E = \text{Temperature at the edges of the piston head in °C.} \]

The temperature difference \((T_C - T_E)\) may be taken as 220°C for cast iron and 75°C for aluminium.

The heat flowing through the piston head \((H)\) may be determined by the following expression, \(i.e.,\)

\[H = C \times HCV \times m \times B.P. \text{ (in kW)} \]

where

\[C = \text{Constant representing that portion of the heat supplied to the engine which is absorbed by the piston. Its value is usually taken as 0.05.} \]
\[HCV = \text{Higher calorific value of the fuel in kJ/kg. It may be taken as } 45 \times 10^3 \text{ kJ/kg for diesel and } 47 \times 10^3 \text{ kJ/kg for petrol,} \]
\[m = \text{Mass of the fuel used in kg per brake power per second, and} \]
\[B.P. = \text{Brake power of the engine per cylinder} \]

Notes: 1. The thickness of the piston head \((t_H)\) is calculated by using equations \((i)\) and \((ii)\) and larger of the two values obtained should be adopted.

2. When \(t_H\) is 6 mm or less, then no ribs are required to strengthen the piston head against gas loads. But when \(t_H\) is greater than 6 mm, then a suitable number of ribs at the centre line of the boss extending around the skirt should be provided to distribute the side thrust from the connecting rod and thus to prevent distortion of the skirt. The thickness of the ribs may be taken as \(t_H/3\) to \(t_H/2\).

3. For engines having length of stroke to cylinder bore \((L/D)\) ratio upto 1.5, a cup is provided in the top of the piston head with a radius equal to 0.7 \(D\). This is done to provide a space for combustion chamber.

32.9 Piston Rings

The piston rings are used to impart the necessary radial pressure to maintain the seal between the piston and the cylinder bore. These are usually made of grey cast iron or alloy cast iron because of their good wearing properties and also they retain spring characteristics even at high temperatures. The piston rings are of the following two types:

1. Compression rings or pressure rings, and
2. Oil control rings or oil scraper.

The compression rings or pressure rings are inserted in the grooves at the top portion of the piston and may be three to seven in number. These rings also transfer heat from the piston to the cylinder liner and absorb some part of the piston fluctuation due to the side thrust.

The oil control rings or oil scrapers are provided below the compression rings. These rings provide proper lubrication to the liner by allowing sufficient oil to move up during upward stroke and at the same time scraps the lubricating oil from the surface of the liner in order to minimise the flow of the oil to the combustion chamber.

The compression rings are usually made of rectangular cross-section and the diameter of the ring is slightly larger than the cylinder bore. A part of the ring is cut-off in order to permit it to go into the cylinder against the liner wall. The diagonal cut or step cut ends, as shown in Fig. 32.4 \((a)\) and \((b)\) respectively, may be used. The gap between the ends should be sufficiently large when the ring is put cold so that even at the highest temperature, the ends do not touch each other when the ring expands, otherwise there might be buckling of the ring.
The radial thickness \(t_1 \) of the ring may be obtained by considering the radial pressure between the cylinder wall and the ring. From bending stress consideration in the ring, the radial thickness is given by

\[
t_1 = D \sqrt[3]{\frac{3p_w}{\sigma_t}}
\]

where
- \(D \) = Cylinder bore in mm,
- \(p_w \) = Pressure of gas on the cylinder wall in N/mm\(^2\). Its value is limited from 0.025 N/mm\(^2\) to 0.042 N/mm\(^2\), and
- \(\sigma_t \) = Allowable bending (tensile) stress in MPa. Its value may be taken from 85 MPa to 110 MPa for cast iron rings.

The axial thickness \(t_2 \) of the rings may be taken as 0.7 \(t_1 \) to \(t_1 \).

The minimum axial thickness \(t_2 \) may also be obtained from the following empirical relation:

\[
t_2 = \frac{D}{10n_R}
\]

where
- \(n_R \) = Number of rings.

The width of the top land (i.e. the distance from the top of the piston to the first ring groove) is made larger than other ring lands to protect the top ring from high temperature conditions existing at the top of the piston.

\[
b_1 = t_1 \text{ to } 1.2 t_1
\]

The width of other ring lands (i.e. the distance between the ring grooves) in the piston may be made equal to or slightly less than the axial thickness of the ring \(t_2 \).

\[
b_2 = 0.75 t_2 \text{ to } t_2
\]

The depth of the ring grooves should be more than the depth of the ring so that the ring does not take any piston side thrust.

The gap between the free ends of the ring is given by 3.5 \(t_1 \) to 4 \(t_1 \). The gap, when the ring is in the cylinder, should be 0.002 \(D \) to 0.004 \(D \).

32.10 Piston Barrel

It is a cylindrical portion of the piston. The maximum thickness \(t_3 \) of the piston barrel may be obtained from the following empirical relation:

\[
t_3 = 0.03 D + b + 4.5 \text{ mm}
\]
where \(b \) = Radial depth of piston ring groove which is taken as 0.4 mm larger than the radial thickness of the piston ring \((t_1)\)

\[
= t_1 + 0.4 \text{ mm}
\]

Thus, the above relation may be written as

\[
t_3 = 0.03D + t_1 + 4.9 \text{ mm}
\]

The piston wall thickness \((t_4)\) towards the open end is decreased and should be taken as 0.25 \(t_3\) to 0.35 \(t_3\).

32.11 Piston Skirt

The portion of the piston below the ring section is known as \textit{piston skirt}. In acts as a bearing for the side thrust of the connecting rod. The length of the piston skirt should be such that the bearing pressure on the piston barrel due to the side thrust does not exceed 0.25 N.mm\(^2\) of the projected area for low speed engines and 0.5 N/mm\(^2\) for high speed engines. It may be noted that the maximum thrust will be during the expansion stroke. The side thrust \((R)\) on the cylinder liner is usually taken as 1/10 of the maximum gas load on the piston.

\[
P = p \times \frac{\pi D^2}{4}
\]

\[
\therefore \text{ Maximum side thrust on the cylinder,}
\]

\[
R = \frac{P}{10} = 0.1 \times p \times \frac{\pi D^2}{4}
\]

where

- \(p \) = Maximum gas pressure in N/mm\(^2\), and
- \(D \) = Cylinder bore in mm.

The side thrust \((R)\) is also given by

\[
R = \text{Bearing pressure} \times \text{Projected bearing area of the piston skirt}
\]

\[
= p_b \times D \times l
\]

where

- \(l \) = Length of the piston skirt in mm.
From equations (i) and (ii), the length of the piston skirt (l) is determined. In actual practice, the length of the piston skirt is taken as 0.65 to 0.8 times the cylinder bore. Now the total length of the piston (L) is given by

\[L = \text{Length of skirt} + \text{Length of ring section} + \text{Top land} \]

The length of the piston usually varies between \(D \) and 1.5 \(D \). It may be noted that a longer piston provides better bearing surface for quiet running of the engine, but it should not be made unnecessarily long as it will increase its own mass and thus the inertia forces.

32.12 Piston Pin

The piston pin (also called gudgeon pin or wrist pin) is used to connect the piston and the connecting rod. It is usually made hollow and tapered on the inside, the smallest inside diameter being at the centre of the pin, as shown in Fig. 32.5. The piston pin passes through the bosses provided on the inside of the piston skirt and the bush of the small end of the connecting rod. The centre of piston pin should be 0.02 \(D \) to 0.04 \(D \) above the centre of the skirt, in order to off-set the turning effect of the friction and to obtain uniform distribution of pressure between the piston and the cylinder liner.

The material used for the piston pin is usually case hardened steel alloy containing nickel, chromium, molybdenum or vanadium having tensile strength from 710 MPa to 910 MPa.

The connection between the piston pin and the small end of the connecting rod may be made either full floating type or semi-floating type. In the full floating type, the piston pin is free to turn both in the piston bosses and the bush of the small end of the connecting rod. The end movements of the piston pin should be secured by means of spring circlips, as shown in Fig. 32.6, in order to prevent the pin from touching and scoring the cylinder liner.

In the semi-floating type, the piston pin is either free to turn in the piston bosses and rigidly secured to the small end of the connecting rod, or it is free to turn in the bush of the small end of the connecting rod and is rigidly secured in the piston bosses by means of a screw, as shown in Fig. 32.7.

The piston pin should be designed for the maximum gas load or the inertia force of the piston, whichever is larger. The bearing area of the piston pin should be about equally divided between the piston pin bosses and the connecting rod bushing. Thus, the length of the pin in the connecting rod bushing will be about 0.45 of the cylinder bore or piston diameter (D), allowing for the end clearance.

* The mean diameter of the piston bosses is made 1.4 \(d_p \) for cast iron pistons and 1.5 \(d_p \) for aluminium pistons, where \(d_p \) is the outside diameter of the piston pin. The piston bosses are usually tapered, increasing the diameter towards the piston wall.
of the pin etc. The outside diameter of the piston pin \((d_0) \) is determined by equating the load on the piston due to gas pressure \((p) \) and the load on the piston pin due to bearing pressure \((p_{b1}) \) at the small end of the connecting rod bushing.

Let
\[
d_0 = \text{Outside diameter of the piston pin in mm}
\]
\[
l_1 = \text{Length of the piston pin in the bush of the small end of the connecting rod in mm. Its value is usually taken as 0.45} \times D.
\]
\[
p_{b1} = \text{Bearing pressure at the small end of the connecting rod bushing in N/mm}^2. \text{ Its value for the bronze bushing may be taken as 25 N/mm}^2.
\]

We know that load on the piston due to gas pressure or gas load
\[
= \frac{\pi D^2}{4} \times p
\]
and load on the piston pin due to bearing pressure or bearing load
\[
= \text{Bearing pressure} \times \text{Bearing area} = p_{b1} \times d_0 \times l_1,
\]

From equations (i) and (ii), the outside diameter of the piston pin \((d_0) \) may be obtained.

The piston pin may be checked in bending by assuming the gas load to be uniformly distributed over the length \(l_1 \), with supports at the centre of the bosses at the two ends. From Fig. 32.8, we find that the length between the supports,
\[
l_2 = l_1 + \frac{D - l_1}{2} = \frac{l_1 + D}{2}
\]

Now maximum bending moment at the centre of the pin,
\[
M = \frac{P}{2} \times \frac{l_2}{2} - \frac{P}{l_1} \times \frac{l_1}{2} \times \frac{l_1}{4}
= \frac{P}{2} \times \frac{l_1 + D}{2} - \frac{P}{2} \times \frac{l_1}{4}
= \frac{P}{2} \left(\frac{l_1 + D}{2} \right) - \frac{P}{2} \times \frac{l_1}{4}
= \frac{P}{8} \times l_1 + \frac{P \times D}{8} - \frac{P \times l_1}{8} = \frac{P \times D}{8}
\]

Fig. 32.7. Semi-floating type piston pin.

Fig. 32.8
We have already discussed that the piston pin is made hollow. Let \(d_0 \) and \(d_i \) be the outside and inside diameters of the piston pin. We know that the section modulus,
\[
Z = \frac{\pi}{32} \left[\frac{(d_0)^4 - (d_i)^4}{d_0} \right]
\]
We know that maximum bending moment,
\[
M = Z \times \sigma_b = \frac{\pi}{32} \left[\frac{(d_0)^4 - (d_i)^4}{d_0} \right] \sigma_b
\]
where \(\sigma_b \) = Allowable bending stress for the material of the piston pin. It is usually taken as 84 MPa for case hardened carbon steel and 140 MPa for heat treated alloy steel.

Assuming \(d_i = 0.6 \ d_0 \), the induced bending stress in the piston pin may be checked.

Example 32.2. Design a cast iron piston for a single acting four stroke engine for the following data:

Cylinder bore = 100 mm ; Stroke = 125 mm ; Maximum gas pressure = 5 N/mm² ; Indicated mean effective pressure = 0.75 N/mm² ; Mechanical efficiency = 80% ; Fuel consumption = 0.15 kg per brake power per hour ; Higher calorific value of fuel = 42 × 10³ kJ/kg ; Speed = 2000 r.p.m.

Any other data required for the design may be assumed.

Solution. Given : \(D = 100 \) mm ; \(L = 125 \) mm = 0.125 m ; \(p = 5 \) N/mm² ; \(p_m = 0.75 \) N/mm² ; \(\eta_m = 80\% = 0.8 \) ; \(m = 0.15 \) kg / BP / h = 41.7 × 10⁻⁶ kg / BP / s ; \(HCV = 42 \times 10^3 \) kJ / kg ; \(N = 2000 \) r.p.m.

The dimensions for various components of the piston are determined as follows :

1. **Piston head or crown**

 The thickness of the piston head or crown is determined on the basis of strength as well as on the basis of heat dissipation and the larger of the two values is adopted.
We know that the thickness of piston head on the basis of strength,

\[t_H = \frac{3p \cdot D^2}{16 \cdot \sigma_f} = \frac{3 \times 5 \times (100)^2}{16 \times 38} = 15.7 \text{ say } 16 \text{ mm} \]

...(Taking \(\sigma_f \) for cast iron = 38 MPa = 38 N/mm²)

Since the engine is a four stroke engine, therefore, the number of working strokes per minute,

\[n = \frac{N}{2} = \frac{2000}{2} = 1000 \]

and cross-sectional area of the cylinder,

\[A = \frac{\pi \cdot D^2}{4} = \frac{\pi \cdot (100)^2}{4} = 7855 \text{ mm}^2 \]

We know that indicated power,

\[IP = \frac{P_m \cdot L \cdot A \cdot n}{60} = \frac{0.75 \times 0.125 \times 7855 \times 1000}{60} = 12.27 \text{ kW} \]

\[\therefore \text{ Brake power, } BP = IP \times \eta_m = 12.27 \times 0.8 = 9.8 \text{ kW} \]

We know that the heat flowing through the piston head,

\[H = C \times HCV \times m \times BP \]

\[= 0.05 \times 42 \times 10^3 \times 41.7 \times 10^{-6} \times 9.8 = 0.86 \text{ kW} = 860 \text{ W} \]

\[\therefore \text{ Thickness of the piston head on the basis of heat dissipation, } t_H = \frac{C \cdot E}{860 \times 0.0067} = \frac{46.6 \times 220}{12.56} = 6.7 \text{ mm} \]

\[\therefore \text{ For cast iron, } k = 46.6 \text{ W/m°C, and } T_C - T_E = 220°C \]

Taking the larger of the two values, we shall adopt

\[t_H = 16 \text{ mm } \text{ Ans.} \]

Since the ratio of \(L/D \) is 1.25, therefore a cup in the top of the piston head with a radius equal to 0.7 \(D \) (i.e. 70 mm) is provided.

2. Radial ribs

The radial ribs may be four in number. The thickness of the ribs varies from \(t_H/3 \) to \(t_H/2 \).

\[\therefore \text{ Thickness of the ribs, } t_R = \frac{16}{3} \text{ to } \frac{16}{2} = 5.33 \text{ to } 8 \text{ mm} \]

Let us adopt \(t_R = 7 \text{ mm } \text{ Ans.} \)

3. Piston rings

Let us assume that there are total four rings (i.e. \(n_r = 4 \)) out of which three are compression rings and one is an oil ring.

We know that the radial thickness of the piston rings,

\[t_1 = D \sqrt{\frac{3 \cdot p_u}{\sigma_f}} = 100 \sqrt{\frac{3 \times 0.035}{90}} = 3.4 \text{ mm} \]

...(Taking \(p_u = 0.035 \text{ N/mm²}, \) and \(\sigma_f = 90 \text{ MPa} \))

and axial thickness of the piston rings

\[t_2 = 0.7 \cdot t_1 \text{ to } 1 = 0.7 \times 3.4 \text{ to } 3.4 \text{ mm} = 2.38 \text{ to } 3.4 \text{ mm} \]

Let us adopt \(t_2 = 3 \text{ mm} \)
We also know that the minimum axial thickness of the piston ring,

\[t_2 = \frac{D}{10 n_r} = \frac{100}{10 \times 4} = 2.5 \text{ mm} \]

Thus the axial thickness of the piston ring as already calculated (i.e. \(t_2 = 3 \text{ mm} \)) is satisfactory. \textbf{Ans.}

The distance from the top of the piston to the first ring groove, \(i.e. \) the width of the top land,

\[b_1 = t_{HL} = 1.2 \text{ mm} = 16 \text{ to } 19.2 \text{ mm} \]

and width of other ring lands,

\[b_2 = 0.75 \times t_2 = 0.75 \times 3 = 2.25 \text{ to } 3 \text{ mm} \]

Let us adopt \(b_1 = 18 \text{ mm} \); and \(b_2 = 2.5 \text{ mm} \) \textbf{Ans.}

We know that the gap between the free ends of the ring,

\[G_1 = 3.5 \times t_1 = 3.5 \times 3.4 = 11.9 \text{ to } 13.6 \text{ mm} \]

and the gap when the ring is in the cylinder,

\[G_2 = 0.002D = 0.002 \times 100 = 0.2 \text{ to } 0.4 \text{ mm} \]

Let us adopt \(G_1 = 12.8 \text{ mm} \); and \(G_2 = 0.3 \text{ mm} \) \textbf{Ans.}

4. \textbf{Piston barrel}

Since the radial depth of the piston ring grooves \((b) \) is about 0.4 mm more than the radial thickness of the piston rings \((t_1) \), therefore,

\[b = t_1 + 0.4 = 3.4 + 0.4 = 3.8 \text{ mm} \]

We know that the maximum thickness of barrel,

\[t_3 = 0.03D + b + 4.5 \text{ mm} = 0.03 \times 100 + 3.8 + 4.5 = 11.3 \text{ mm} \]

and piston wall thickness towards the open end,

\[t_4 = 0.25 \times t_3 = 0.25 \times 11.3 = 2.8 \text{ to } 3.9 \text{ mm} \]

Let us adopt \(t_4 = 3.4 \text{ mm} \) \textbf{Ans.}

5. \textbf{Piston skirt}

Let \(l = \text{Length of the skirt in mm.} \)

We know that the maximum side thrust on the cylinder due to gas pressure \((p) \),

\[R = \mu \times \frac{\pi D^2}{4} \times p = 0.1 \times \frac{\pi (100)^2}{4} \times 5 = 3928 \text{ N} \]

\(\text{(Taking } \mu = 0.1) \)

We also know that the side thrust due to bearing pressure on the piston barrel \((p_b) \),

\[R = p_b \times D \times l = 0.45 \times 100 \times l = 45l \text{ N} \]

\(\text{(Taking } p_b = 0.45 \text{ N/mm}^2) \)

From above, we find that

\[45l = 3928 \text{ or } l = 3928 / 45 = 87.3 \text{ say } 90 \text{ mm} \textbf{Ans.} \]

\[\therefore \text{Total length of the piston,} \]

\[L = \text{Length of the skirt + Length of the ring section + Top land} \]

\[= l + (4 \times t_2 + 3b_2) + b_1 \]

\[= 90 + (4 \times 3 + 3 \times 3) + 18 = 129 \text{ say } 130 \text{ mm} \textbf{Ans.} \]

6. \textbf{Piston pin}

Let \(d_0 = \text{Outside diameter of the pin in mm,} \)

\(l_1 = \text{Length of pin in the bush of the small end of the connecting rod in mm,} \)
\[p_{b1} = \text{Bearing pressure at the small end of the connecting rod bushing in N/mm}^2. \text{ It value for bronze bushing is taken as 25 N/mm}^2. \]

We know that load on the pin due to bearing pressure
\[= \text{Bearing pressure} \times \text{Bearing area} = p_{b1} \times d_0 \times l_1 \]
\[= 25 \times d_0 \times 0.45 \times 100 = 1125 \text{ } d_0 \text{ N} \]
\[(\text{Taking } l_1 = 0.45 \text{ } D)\]

We also know that maximum load on the piston due to gas pressure or maximum gas load
\[= \frac{\pi D^2}{4} \times p = \frac{\pi (100)^2}{4} \times 5 = 39 \text{ 275 N} \]

From above, we find that
\[1125 \text{ } d_0 = 39 \text{ 275} \text{ or } d_0 = 39 \text{ 275} / 1125 = 34.9 \text{ say 35 mm} \text{ Ans.} \]

The inside diameter of the pin \((d_0)\) is usually taken as 0.6 \(d_0\).
\[
\therefore \quad d_i = 0.6 \times 35 = 21 \text{ mm} \text{ Ans.}
\]

Let the piston pin be made of heat treated alloy steel for which the bending stress \((\sigma_b)\) may be taken as 140 MPa. Now let us check the induced bending stress in the pin.

We know that maximum bending moment at the centre of the pin,
\[M = \frac{P \cdot D}{8} = \frac{39 \text{ 275} \times 100}{8} = 491 \times 10^3 \text{ N-mm} \]

We also know that maximum bending moment \((M)\),
\[
491 \times 10^3 = \frac{\pi}{32} \left[\frac{(d_0)^4 - (d_i)^4}{d_0} \right] \sigma_b = \frac{\pi}{32} \left[\frac{(35)^4 - (21)^4}{35} \right] \sigma_b = 3664 \sigma_b
\]
\[
\therefore \quad \sigma_b = 491 \times 10^3 / 3664 = 134 \text{ N/mm}^2 \text{ or MPa}
\]

Since the induced bending stress in the pin is less than the permissible value of 140 MPa \((i.e. 140 \text{ N/mm}^2)\), therefore, the dimensions for the pin as calculated above \((i.e. d_0 = 35 \text{ mm and } d_i = 21 \text{ mm})\) are satisfactory.

German engineer Fleix Wankel (1902-88) built a rotary engine in 1957. A triangular piston turns inside a chamber through the combustion cycle.
The connecting rod is the intermediate member between the piston and the crankshaft. Its primary function is to transmit the push and pull from the piston pin to the crankpin and thus convert the reciprocating motion of the piston into the rotary motion of the crank. The usual form of the connecting rod in internal combustion engines is shown in Fig. 32.9. It consists of a long shank, a small end and a big end. The cross-section of the shank may be rectangular, circular, tubular, I-section or H-section. Generally circular section is used for low speed engines while I-section is preferred for high speed engines.

![Diagram of Connecting Rod](Fig. 32.9)

The length of the connecting rod \((l) \) depends upon the ratio of \(l/r \), where \(r \) is the radius of crank. It may be noted that the smaller length will decrease the ratio \(l/r \). This increases the angularity of the connecting rod which increases the side thrust of the piston against the cylinder liner which in turn increases the wear of the liner. The larger length of the connecting rod will increase the ratio \(l/r \). This decreases the angularity of the connecting rod and thus decreases the side thrust and the resulting wear of the cylinder. But the larger length of the connecting rod increases the overall height of the engine. Hence, a compromise is made and the ratio \(l/r \) is generally kept as 4 to 5.

The small end of the connecting rod is usually made in the form of an eye and is provided with a bush of phosphor bronze. It is connected to the piston by means of a piston pin.

The big end of the connecting rod is usually made split (in two halves) so that it can be mounted easily on the crankpin bearing shells. The split cap is fastened to the big end with two cap bolts. The bearing shells of the big end are made of steel, brass or bronze with a thin lining (about 0.75 mm) of white metal or babbit metal. The wear of the big end bearing is allowed for by inserting thin metallic strips (known as shims) about 0.04 mm thick between the cap and the fixed half of the connecting rod. As the wear takes place, one or more strips are removed and the bearing is trued up.

* It is the distance between the centres of small end and big end of the connecting rod.

** One half is fixed with the connecting rod and the other half (known as cap) is fastened with two cap bolts.
The connecting rods are usually manufactured by drop forging process and it should have adequate strength, stiffness and minimum weight. The material mostly used for connecting rods varies from mild carbon steels (having 0.35 to 0.45 percent carbon) to alloy steels (chrome-nickel or chrome-molybdenum steels). The carbon steel having 0.35 percent carbon has an ultimate tensile strength of about 650 MPa when properly heat treated and a carbon steel with 0.45 percent carbon has a ultimate tensile strength of 750 MPa. These steels are used for connecting rods of industrial engines. The alloy steels have an ultimate tensile strength of about 1050 MPa and are used for connecting rods of aeroengines and automobile engines.

The bearings at the two ends of the connecting rod are either splash lubricated or pressure lubricated. The big end bearing is usually splash lubricated while the small end bearing is pressure lubricated. In the splash lubrication system, the cap at the big end is provided with a dipper or spout and set at an angle in such a way that when the connecting rod moves downward, the spout will dip into the lubricating oil contained in the sump. The oil is forced up the spout and then to the big end bearing. Now when the connecting rod moves upward, a splash of oil is produced by the spout. This splashed up lubricant find its way into the small end bearing through the widely chamfered holes provided on the upper surface of the small end.

In the pressure lubricating system, the lubricating oil is fed under pressure to the big end bearing through the holes drilled in crankshaft, crankwebs and crank pin. From the big end bearing, the oil is fed to small end bearing through a fine hole drilled in the shank of the connecting rod. In some cases, the small end bearing is lubricated by the oil scrapped from the walls of the cylinder liner by the oil scraper rings.

32.14 Forces Acting on the Connecting Rod

The various forces acting on the connecting rod are as follows:

1. Force on the piston due to gas pressure and inertia of the reciprocating parts,
2. Force due to inertia of the connecting rod or inertia bending forces,
3. Force due to friction of the piston rings and of the piston, and
4. Force due to friction of the piston pin bearing and the crankpin bearing.

We shall now derive the expressions for the forces acting on a vertical engine, as discussed below.

1. Force on the piston due to gas pressure and inertia of reciprocating parts

Consider a connecting rod PC as shown in Fig. 32.10.

![Fig. 32.10. Forces on the connecting rod.](image-url)
Let

\[p = \text{Maximum pressure of gas}, \]
\[D = \text{Diameter of piston}, \]
\[A = \text{Cross-section area of piston} = \frac{\pi D^2}{4}, \]
\[m_R = \text{Mass of reciprocating parts}, \]
\[= \text{Mass of piston, gudgeon pin etc.} + \frac{1}{3} \text{rd mass of connecting rod}, \]
\[\omega = \text{Angular speed of crank}, \]
\[\phi = \text{Angle of inclination of the connecting rod with the line of stroke}, \]
\[\theta = \text{Angle of inclination of the crank from top dead centre}, \]
\[r = \text{Radius of crank}, \]
\[l = \text{Length of connecting rod, and} \]
\[n = \text{Ratio of length of connecting rod to radius of crank} = \frac{l}{r}. \]

We know that the force on the piston due to pressure of gas,

\[F_L = \text{Pressure} \times \text{Area} = p \times A = p \times \frac{\pi D^2}{4} \]

and inertia force of reciprocating parts,

\[F_I = \text{Mass} \times \text{*Acceleration} = m_R \times \omega^2 \times r \left(\cos \theta + \frac{\cos 2\theta}{n} \right) \]

It may be noted that the inertia force of reciprocating parts opposes the force on the piston when it moves during its downward stroke (i.e., when the piston moves from the top dead centre to bottom dead centre). On the other hand, the inertia force of the reciprocating parts helps the force on the piston when it moves from the bottom dead centre to top dead centre.

\[\therefore \text{Net force acting on the piston or piston pin (or gudgeon pin or wrist pin),} \]
\[F_p = \text{Force due to gas pressure} \mp \text{Inertia force} \]
\[= F_L \mp F_I \]

The –ve sign is used when piston moves from TDC to BDC and +ve sign is used when piston moves from BDC to TDC.

When weight of the reciprocating parts \((W_R = m_R \cdot g) \) is to be taken into consideration, then

\[F_p = F_L \mp F_I \pm W_R \]

* Acceleration of reciprocating parts = \(\omega^2 \times r \left(\cos \theta + \frac{\cos 2\theta}{n} \right) \)
The force F_P gives rise to a force F_C in the connecting rod and a thrust F_N on the sides of the cylinder walls. From Fig. 32.10, we see that force in the connecting rod at any instant,

$$F_C = \frac{F_P}{\cos \phi} = \frac{F_P}{\sqrt{1 - \frac{\sin^2 \theta}{n^2}}}$$

The force in the connecting rod will be maximum when the crank and the connecting rod are perpendicular to each other (i.e. when $\theta = 90^\circ$). But at this position, the gas pressure would be decreased considerably. Thus, for all practical purposes, the force in the connecting rod (F_C) is taken equal to the maximum force on the piston due to pressure of gas (F_L), neglecting piston inertia effects.

2. Force due to inertia of the connecting rod or inertia bending forces

Consider a connecting rod PC and a crank OC rotating with uniform angular velocity ω rad / s. In order to find the acceleration of various points on the connecting rod, draw the Klien’s acceleration diagram $CQNO$ as shown in Fig. 32.11 (a). CO represents the acceleration of C towards O and NO represents the acceleration of P towards O. The acceleration of other points such as D, E, F and G etc., on the connecting rod PC may be found by drawing horizontal lines from these points to intersect CN at d, e, f, and g respectively. Now dO, eO, fO and gO represents the acceleration of D, E, F and G all towards O. The inertia force acting on each point will be as follows:

- Inertia force at $C = m \times \omega^2 \times CO$
- Inertia force at $D = m \times \omega^2 \times dO$
- Inertia force at $E = m \times \omega^2 \times eO$, and so on.

The inertia forces will be opposite to the direction of acceleration or centrifugal forces. The inertia forces can be resolved into two components, one parallel to the connecting rod and the other perpendicular to rod. The parallel (or longitudinal) components adds up algebraically to the force.

* For derivation, please refer to Authors’ popular book on ‘Theory of Machines’.
acting on the connecting rod \(F_C \) and produces thrust on the pins. The perpendicular (or transverse) components produces bending action (also called whipping action) and the stress induced in the connecting rod is called \textit{whipping stress}.

It may be noted that the perpendicular components will be maximum, when the crank and connecting rod are at right angles to each other.

The variation of the inertia force on the connecting rod is linear and is like a simply supported beam of variable loading as shown in Fig. 32.11 (b) and (c). Assuming that the connecting rod is of uniform cross-section and has mass \(m_1 \) kg per unit length, therefore,

\[
\text{Inertia force per unit length at the crankpin } = m_1 \times \omega^2 r
\]

and inertia force per unit length at the piston pin

\[
= 0
\]

Inertia force due to small element of length \(dx \) at a distance \(x \) from the piston pin \(P \),

\[
dF_1 = m_1 \times \omega^2 r \times \frac{x}{l} \times dx
\]

\[
\therefore \text{Resultant inertia force, } F_1 = \int_{0}^{l} m_1 \times \omega^2 r \times \frac{x}{l} \times dx = \frac{m_1 \times \omega^2 r}{l} \int_{0}^{l} \frac{x^2}{l} dx
\]

\[
= \frac{m_1 l}{2} \times \omega^2 r = \frac{m}{2} \times \omega^2 r \quad \text{...(Substituting } m_1 \cdot l = m)\]

This resultant inertia force acts at a distance of \(2l/3 \) from the piston pin \(P \).

Since it has been assumed that \(\frac{1}{3} \) rd mass of the connecting rod is concentrated at piston pin \(P \) (i.e. small end of connecting rod) and \(\frac{2}{3} \) rd at the crankpin (i.e. big end of connecting rod), therefore, the reaction at these two ends will be in the same proportion. \(i.e. \)

\[
R_P = \frac{1}{3} F_1, \text{ and } R_C = \frac{2}{3} F_1
\]
Now the bending moment acting on the rod at section $X - X$ at a distance x from P,

$$M_X = R_p \times x - m_1 \times \frac{\omega^2 r}{l} \times x \times \frac{1}{2} x \times \frac{x}{3}$$

$$= \frac{1}{3} F_1 \times x - \frac{m_1 d}{2} \times \frac{\omega^2 r}{3l^2} \times x^3$$

...(Multiplying and dividing the latter expression by l)

$$= \frac{F_1 \times x}{3} - \frac{F_1 \times x^3}{3l^2} = \frac{F_1}{3} \left(x - \frac{x^3}{l^2}\right)$$

...(i)

For maximum bending moment, differentiate M_X with respect to x and equate to zero, i.e.

$$\frac{dM_X}{dx} = 0 \quad \text{or} \quad \frac{F_1}{3} \left[1 - \frac{3x^2}{l^2}\right] = 0$$

:. \quad 1 - \frac{3x^2}{l^2} = 0 \quad \text{or} \quad 3x^2 = l^2 \quad \text{or} \quad x = \frac{l}{\sqrt{3}}$

Maximum bending moment,

$$M_{\text{max}} = \frac{F_1}{3} \left[1 - \left(\frac{l}{\sqrt{3}}\right)^3\right]$$

...[From equation (i)]

$$= \frac{F_1}{3} \left[1 - \frac{l}{3\sqrt{3}}\right] = \frac{F_1 \times l}{3\sqrt{3}} \times \frac{2}{3} = \frac{2F_1 \times l}{9\sqrt{3}}$$

and the maximum bending stress, due to inertia of the connecting rod,

$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{Z}$$

where

$Z = \text{Section mol ulus}.$

From above we see that the maximum bending moment varies as the square of speed, therefore, the bending stress due to high speed will be dangerous. It may be noted that the maximum axial force and the maximum bending stress do not occur simultaneously. In an I.C. engine, the maximum gas load occurs close to top dead centre whereas the maximum bending stress occurs when the crank angle $\theta = 65^\circ$ to 70° from top dead centre. The pressure of gas falls suddenly as the piston moves from dead centre. Thus the general practice is to design a connecting rod by assuming the force in the connecting rod (F_C) equal to the maximum force due to pressure (F_L), neglecting piston inertia effects and then checked for bending stress due to inertia force (i.e. whipping stress).

3. Force due to friction of piston rings and of the piston

The frictional force (F) of the piston rings may be determined by using the following expression:

$$F = \pi D \cdot t_R \cdot n_R \cdot P_R \cdot \mu$$

where

$D = \text{Cylinder bore,}$

$t_R = \text{Axial width of rings,}$

* B.M. due to variable force from 0 to $m_1 \frac{\omega^2 r}{l} \times \frac{x}{3}$ is equal to the area of triangle multiplied by the distance of C.G. from $X - X$ (i.e. $\frac{2}{3}$).
1150 ■ A Textbook of Machine Design

\[n_R = \text{Number of rings}, \]
\[p_R = \text{Pressure of rings (0.025 to 0.04 N/mm}^2\text{)}, \text{ and} \]
\[\mu = \text{Coefficient of friction (about 0.1).} \]

Since the frictional force of the piston rings is usually very small, therefore, it may be neglected.

The friction of the piston is produced by the normal component of the piston pressure which varies from 3 to 10 percent of the piston pressure. If the coefficient of friction is about 0.05 to 0.06, then the frictional force due to piston will be about 0.5 to 0.6 of the piston pressure, which is very low. Thus, the frictional force due to piston is also neglected.

4. Force due to friction of the piston pin bearing and crankpin bearing

The force due to friction of the piston pin bearing and crankpin bearing, is to bend the connecting rod and to increase the compressive stress on the connecting rod due to the direct load. Thus, the maximum compressive stress in the connecting rod will be

\[\sigma_c(\text{max}) = \text{Direct compressive stress} + \text{Maximum bending or whipping stress due to inertia bending stress} \]

32.15 Design of Connecting Rod

In designing a connecting rod, the following dimensions are required to be determined:

1. Dimensions of cross-section of the connecting rod,
2. Dimensions of the crankpin at the big end and the piston pin at the small end,
3. Size of bolts for securing the big end cap, and
4. Thickness of the big end cap.

The procedure adopted in determining the above mentioned dimensions is discussed as below:

This experimental car burns hydrogen fuel in an ordinary piston engine. Its exhaust gases cause no pollution, because they contain only water vapour.
1. Dimensions of cross-section of the connecting rod

A connecting rod is a machine member which is subjected to alternating direct compressive and tensile forces. Since the compressive forces are much higher than the tensile forces, therefore, the cross-section of the connecting rod is designed as a strut and the Rankine’s formula is used.

A connecting rod, as shown in Fig. 32.12, subjected to an axial load \(W \) may buckle with \(X \)-axis as neutral axis (i.e. in the plane of motion of the connecting rod) or \(Y \)-axis as neutral axis (i.e. in the plane perpendicular to the plane of motion). The connecting rod is considered like both ends hinged for buckling about \(X \)-axis and both ends fixed for buckling about \(Y \)-axis.

A connecting rod should be equally strong in buckling about both the axes.

Let

- \(A \) = Cross-sectional area of the connecting rod,
- \(l \) = Length of the connecting rod,
- \(\sigma_c \) = Compressive yield stress,
- \(W_B \) = Buckling load,
- \(I_{xx} \) and \(I_{yy} \) = Moment of inertia of the section about \(X \)-axis and \(Y \)-axis respectively, and
- \(k_{xx} \) and \(k_{yy} \) = Radius of gyration of the section about \(X \)-axis and \(Y \)-axis respectively.

According to Rankine’s formula,

\[
W_B \text{ about } X \text{-axis} = \frac{\sigma_c A}{1 + a \left(\frac{l}{k_{xx}} \right)^2} = \frac{\sigma_c A}{1 + a \left(\frac{l}{2k_{yy}} \right)^2} \quad \text{... (\because For both ends hinged, } L = l)\]

and

\[
W_B \text{ about } Y \text{-axis} = \frac{\sigma_c A}{1 + a \left(\frac{l}{k_{yy}} \right)^2} = \frac{\sigma_c A}{1 + a \left(\frac{l}{2k_{xx}} \right)^2} \quad \text{... [\because For both ends fixed, } L = \frac{l}{2}]\]

where

- \(L \) = Equivalent length of the connecting rod, and
- \(a \) = Constant
 - \(= 1 \div 7500 \), for mild steel
 - \(= 1 \div 9000 \), for wrought iron
 - \(= 1 \div 1600 \), for cast iron

\[\text{Fig. 32.12. Buckling of connecting rod.}\]

In order to have a connecting rod equally strong in buckling about both the axes, the buckling loads must be equal, \(i.e.\)

\[
\frac{\sigma_c A}{1 + a \left(\frac{l}{k_{xx}} \right)^2} = \frac{\sigma_c A}{1 + a \left(\frac{l}{2k_{yy}} \right)^2} \quad \text{or} \quad \left(\frac{l}{k_{xx}} \right)^2 = \left(\frac{l}{2k_{yy}} \right)^2
\]

\[\therefore \quad k_{xx}^2 = 4k_{yy}^2 \quad \text{or} \quad I_{xx} = 4I_{yy} \quad \text{... (\because } I = A \cdot k^2)\]
This shows that the connecting rod is four times strong in buckling about Y-axis than about X-axis. If \(I_{xx} > 4 I_{yy} \), then buckling will occur about Y-axis and if \(I_{xx} < 4 I_{yy} \), buckling will occur about X-axis. In actual practice, \(I_{xx} \) is kept slightly less than \(4 I_{yy} \). It is usually taken between 3 and 3.5 and the connecting rod is designed for buckling about X-axis. The design will always be satisfactory for buckling about Y-axis.

The most suitable section for the connecting rod is I-section with the proportions as shown in Fig. 32.13 (a).

Let thickness of the flange and web of the section = \(t \)

Width of the section, \(B = 4 \, t \)

and depth or height of the section, \(H = 5t \)

From Fig. 32.13 (a), we find that area of the section,
\[
A = 2 \times (4 \, t \times t) + 3 \times t \times t = 11 \, t^2
\]

Moment of inertia of the section about X-axis,
\[
I_{xx} = \frac{1}{12} \left[4 \, t \times (5t)^3 - 3t \times (3t)^3 \right] = \frac{419}{12} \, t^4
\]

and moment of inertia of the section about Y-axis,
\[
I_{yy} = \left[2 \times \frac{1}{12} \times (4t)^3 + \frac{1}{12} \times (3t)^3 \right] = \frac{131}{12} \, t^4
\]

\[
\therefore \frac{I_{xx}}{I_{yy}} = \frac{419}{12} \times \frac{12}{131} = 3.2
\]

Since the value of \(\frac{I_{xx}}{I_{yy}} \) lies between 3 and 3.5, therefore, I-section chosen is quite satisfactory.

After deciding the proportions for I-section of the connecting rod, its dimensions are determined by considering the buckling of the rod about X-axis (assuming both ends hinged) and applying the Rankine’s formula. We know that buckling load,
\[
W_B = \frac{\sigma_c \, A}{1 + d \left(\frac{L}{k_{xx}} \right)^2}
\]

The buckling load (\(W_B \)) may be calculated by using the following relation, i.e.
\[
W_B = \text{Max. gas force} \times \text{Factor of safety}
\]

The factor of safety may be taken as 5 to 6.

Notes:
(a) The I-section of the connecting rod is used due to its lightness and to keep the inertia forces as low as possible specially in case of high speed engines. It can also withstand high gas pressure.
(b) Sometimes a connecting rod may have rectangular section. For slow speed engines, circular section may be used.
(c) Since connecting rod is manufactured by forging, therefore the sharp corner of I-section are rounded off as shown in Fig. 32.13 (b) for easy removal of the section from dies.
The dimensions $B = 4\ t$ and $H = 5\ t$, as obtained above by applying the Rankine’s formula, are at the middle of the connecting rod. The width of the section (B) is kept constant throughout the length of the connecting rod, but the depth or height varies. The depth near the small end (or piston end) is taken as $H_1 = 0.75\ H$ to 0.9H and the depth near the big end (or crank end) is taken $H_2 = 1.1H$ to 1.25H.

2. Dimensions of the crankpin at the big end and the piston pin at the small end

Since the dimensions of the crankpin at the big end and the piston pin (also known as gudgeon pin or wrist pin) at the small end are limited, therefore, fairly high bearing pressures have to be allowed at the bearings of these two pins.

The crankpin at the big end has removable precision bearing shells of brass or bronze or steel with a thin lining (1 mm or less) of bearing metal (such as tin, lead, babbit, copper, lead) on the inner surface of the shell. The allowable bearing pressure on the crankpin depends upon many factors such as material of the bearing, viscosity of the lubricating oil, method of lubrication and the space limitations. The value of bearing pressure may be taken as 7 N/mm² to 12.5 N/mm² depending upon the material and method of lubrication used.

The piston pin bearing is usually a phosphor bronze bush of about 3 mm thickness and the allowable bearing pressure may be taken as 10.5 N/mm² to 15 N/mm².

Since the maximum load to be carried by the crankpin and piston pin bearings is the maximum force in the connecting rod (F_C), therefore the dimensions for these two pins are determined for the maximum force in the connecting rod (F_C) which is taken equal to the maximum force on the piston due to gas pressure (F_L) neglecting the inertia forces.

We know that maximum gas force,

$$F_L = \pi \frac{D^2}{4} \times p$$

where

D = Cylinder bore or piston diameter in mm, and

p = Maximum gas pressure in N/mm²

Now the dimensions of the crankpin and piston pin are determined as discussed below:

Let

d_c = Diameter of the crank pin in mm,

l_c = Length of the crank pin in mm,

p_{bc} = Allowable bearing pressure in N/mm², and

d_p, l_p and p_{bp} = Corresponding values for the piston pin,

We know that load on the crank pin

$$= \text{Projected area } \times \text{Bearing pressure}$$

$$= d_c \cdot l_c \cdot p_{bc}$$

...(ii)

Similarly, load on the piston pin

$$= d_p \cdot l_p \cdot p_{bp}$$

...(iii)
Equating equation (i) and (ii), we have
\[F_L = d_c \cdot l_c \cdot p_{bc} \]
Taking \(l_c = 1.25 \) to \(1.5 \) \(d_c \), the value of \(d_c \) and \(l_c \) are determined from the above expression.

Again, equating equations (i) and (iii), we have
\[F_L = d_p \cdot l_p \cdot p_{pp} \]
Taking \(l_p = 1.5 \) to \(2 \) \(d_p \), the value of \(d_p \) and \(l_p \) are determined from the above expression.

3. Size of bolts for securing the big end cap

The bolts and the big end cap are subjected to tensile force which corresponds to the inertia force of the reciprocating parts at the top dead centre on the exhaust stroke. We know that inertia force of the reciprocating parts,
\[F_I = m_R \omega^2 r \left(\cos \theta + \frac{\cos 20}{l/r} \right) \]
We also know that at the top dead centre, the angle of inclination of the crank with the line of stroke, \(\theta = 0 \)
\[F_I = m_R \omega^2 r \left(1 + \frac{r}{l} \right) \]
where
- \(m_R \) = Mass of the reciprocating parts in kg,
- \(\omega \) = Angular speed of the engine in rad / s,
- \(r \) = Radius of the crank in metres, and
- \(l \) = Length of the connecting rod in metres.

The bolts may be made of high carbon steel or nickel alloy steel. Since the bolts are under repeated stresses but not alternating stresses, therefore, a factor of safety may be taken as 6.

Let
- \(d_{cb} \) = Core diameter of the bolt in mm,
- \(\sigma_t \) = Allowable tensile stress for the material of the bolts in MPa, and
- \(n_b \) = Number of bolts. Generally two bolts are used.

\[\therefore \text{Force on the bolts} = \frac{\pi}{4} (d_{cb})^2 \sigma_t \times n_b \]
Equating the inertia force to the force on the bolts, we have
\[F_1 = \frac{\pi}{4} (d_{cb})^2 \sigma \times n_b \]
From this expression, \(d_{cb} \) is obtained. The nominal or major diameter (\(d_b \)) of the bolt is given by
\[d_b = \frac{d_{cb}}{0.84} \]

4. Thickness of the big end cap

The thickness of the big end cap (\(t_c \)) may be determined by treating the cap as a beam freely supported at the cap bolt centres and loaded by the inertia force at the top dead centre on the exhaust stroke (i.e. \(F_1 \) when \(\theta = 0 \)). This load is assumed to act in between the uniformly distributed load and the centrally concentrated load. Therefore, the maximum bending moment acting on the cap will be taken as
\[M_C = \frac{F_1 \times x}{6} \]
where \(x = \) Distance between the bolt centres.
\(= \) Dia. of crankpin or big end bearing (\(d_b \)) + 2 \times Thickness of bearing liner (3 mm) + Clearance (3 mm)

Let
\[b_c = \text{Width of the cap in mm. It is equal to the length of the crankpin or big end bearing (} l_c \text{), and} \]
\[\sigma_b = \text{Allowable bending stress for the material of the cap in MPa.} \]

We know that section modulus for the cap,
\[Z_C = \frac{b_c (t_c)^2}{6} \]
∴ Bending stress,
\[\sigma_b = \frac{M_C}{Z_C} = \frac{F_1 \times x}{6 \times \frac{b_c (t_c)^2}{b_c (t_c)^2}} = \frac{F_1 \times x}{b_c (t_c)^2} \]
From this expression, the value of \(t_c \) is obtained.

Note: The design of connecting rod should be checked for whipping stress (i.e. bending stress due to inertia force on the connecting rod).

Example 32.3. Design a connecting rod for an I.C. engine running at 1800 r.p.m. and developing a maximum pressure of 3.15 N/mm². The diameter of the piston is 100 mm; mass of the reciprocating parts per cylinder 2.25 kg; length of connecting rod 380 mm; stroke of piston 190 mm and compression ratio 6 : 1. Take a factor of safety of 6 for the design. Take length to diameter ratio for bearing as 1.3 and small end bearing as 2 and the corresponding bearing pressures as 10 N/mm² and 15 N/mm². The density of material of the rod may be taken as 8000 kg/m³ and the allowable stress in the bolts as 60 N/mm² and in cap as 80 N/mm². The rod is to be of I-section for which you can choose your own proportions.

Draw a neat dimensioned sketch showing provision for lubrication. Use Rankine formula for which the numerator constant may be taken as 320 N/mm² and the denominator constant 1 / 7500.

* We know that the maximum bending moment for a simply or freely supported beam with a uniformly distributed load of \(F_1 \) over a length \(x \) between the supports (In this case, \(x \) is the distance between the cap bolt centres) is \(\frac{F_1 \times x}{8} \). When the load \(F_1 \) is assumed to act at the centre of the freely supported beam, then the maximum bending moment is \(\frac{F_1 \times x}{4} \). Thus the maximum bending moment in between these two bending moments (i.e. \(\frac{F_1 \times x}{8} \) and \(\frac{F_1 \times x}{4} \)) is \(\frac{F_1 \times x}{6} \).
Solution. Given : \(N = 1800 \text{ r.p.m.} \); \(p = 3.15 \text{ N/mm}^2 \); \(D = 100 \text{ mm} \); \(m_r = 2.25 \text{ kg} \); \(l = 380 \text{ mm} \); *Compression ratio = 6 : 1 ; \(F. S. = 6 \).

The connecting rod is designed as discussed below:

1. **Dimension of I-section of the connecting rod**

Let us consider an I-section of the connecting rod, as shown in Fig. 32.14 (a), with the following proportions:

- Flange and web thickness of the section = \(t \)
- Width of the section, \(B = 4t \) and depth or height of the section, \(H = 5t \)

First of all, let us find whether the section chosen is satisfactory or not.

We have already discussed that the connecting rod is considered like both ends hinged for buckling about \(X \)-axis and both ends fixed for buckling about \(Y \)-axis. The connecting rod should be equally strong in buckling about both the axes. We know that in order to have a connecting rod equally strong about both the axes,

\[
I_{xx} = 4I_{yy}
\]

where

- \(I_{xx} \) = Moment of inertia of the section about \(X \)-axis, and
- \(I_{yy} \) = Moment of inertia of the section about \(Y \)-axis.

In actual practice, \(I_{xx} \) is kept slightly less than \(4I_{yy} \). It is usually taken between 3 and 3.5 and the connecting rod is designed for buckling about \(X \)-axis.

Now, for the section as shown in Fig. 32.14 (a), area of the section,

\[
A = 2(4t \times t) + 3t \times t = 11t^2
\]

\[
I_{xx} = \frac{1}{12} \left[4t(5t)^3 - 3t \times (3t)^3 \right] = \frac{419}{12} t^4
\]

and

\[
I_{yy} = 2 \times \frac{1}{12} t(4t)^3 + \frac{1}{12} \times 3t \times t^3 = \frac{131}{12} t^4
\]

\[
\therefore \frac{I_{xx}}{I_{yy}} = \frac{419}{12} \times \frac{12}{131} = 3.2
\]

Since \(\frac{I_{xx}}{I_{yy}} = 3.2 \), therefore the section chosen is quite satisfactory.

Now let us find the dimensions of this I-section. Since the connecting rod is designed by taking the force on the connecting rod (\(F_C \)) equal to the maximum force on the piston (\(F_L \)) due to gas pressure, therefore,

\[
F_C = F_L = \frac{\pi D^2}{4} \times p = \frac{\pi(100)^2}{4} \times 3.15 = 24740 \text{ N}
\]

We know that the connecting rod is designed for buckling about \(X \)-axis (i.e. in the plane of motion of the connecting rod) assuming both ends hinged. Since a factor of safety is given as 6, therefore the buckling load,

\[
W_b = F_C \times F. S. = 24740 \times 6 = 148440 \text{ N}
\]

* Superfluous data
We know that radius of gyration of the section about X-axis,

\[k_{xx} = \sqrt{\frac{I_{xx}}{A}} = \sqrt{\frac{419 t^4}{12} \times \frac{1}{11 t^2}} = 1.78 \ t \]

Length of crank,

\[r = \frac{\text{Stroke of piston}}{2} = \frac{190}{2} = 95 \ mm \]

Length of the connecting rod,

\[l = 380 \ mm \]

∴ Equivalent length of the connecting rod for both ends hinged,

\[L = l = 380 \ mm \]

Now according to Rankine’s formula, we know that buckling load \(W_B \),

\[
\frac{148440}{320} = \frac{\sigma_c A}{1 + \left(\frac{L}{k_{xx}} \right)^2 \left(1 + \frac{1}{7500} \right)^2 (380)^2} = \frac{11 t^2}{1 + 6.1}
\]

\[
\frac{148440}{320} = \frac{11 t^2}{1 + 6.1} = \frac{11 t^4}{t^2 + 6.1}
\]

\[
464 (t^2 + 6.1) = 11 t^4
\]

or \(t^4 - 42.2 t^2 - 257.3 = 0 \)

∴ \(t^2 = \frac{42.2 \pm \sqrt{(42.2)^2 + 4 \times 257.3}}{2} = \frac{42.2 \pm 53}{2} = 47.6 \)

or \(t = 6.9 \) say 7 mm

Thus, the dimensions of I-section of the connecting rod are:

Thickness of flange and web of the section

\[t = 7 \ mm \ \text{Ans.} \]

Width of the section, \(B = 4 t = 4 \times 7 = 28 \ mm \ \text{Ans.} \)

and depth or height of the section,

\[H = 5 t = 5 \times 7 = 35 \ mm \ \text{Ans.} \]
These dimensions are at the middle of the connecting rod. The width \(B \) is kept constant throughout the length of the rod, but the depth \(H \) varies. The depth near the big end or crank end is kept as \(1.1H \) to \(1.25H \) and the depth near the small end or piston end or piston end is kept as \(0.75H \) to \(0.9H \). Let us take

Depth near the big end,
\[
H_1 = 1.2H = 1.2 \times 35 = 42 \text{ mm}
\]
and depth near the small end,
\[
H_2 = 0.85H = 0.85 \times 35 = 29.75 \text{ say 30 mm}
\]
\[
\therefore \text{ Dimensions of the section near the big end } = 42 \text{ mm } \times 28 \text{ mm Ans.}
\]
and dimensions of the section near the small end
\[
= 30 \text{ mm } \times 28 \text{ mm Ans.}
\]

Since the connecting rod is manufactured by forging, therefore the sharp corners of I-section are rounded off, as shown in Fig. 32.14 (b), for easy removal of the section from the dies.

2. Dimensions of the crankpin or the big end bearing and piston pin or small end bearing

Let \(d_c \) = Diameter of the crankpin or big end bearing,
\[
l_c = \text{length of the crankpin or big end bearing } = 1.3 d_c \quad ...(\text{Given})
\]
\[
p_{bc} = \text{Bearing pressure } = 10 \text{ N/mm}^2 \quad ...(\text{Given})
\]

We know that load on the crankpin or big end bearing
\[
= \text{Projected area } \times \text{Bearing pressure } = d_c \cdot l_c \cdot p_{bc} = d_c \times 1.3 d_c \times 10 = 13 (d_c)^2
\]
Since the crankpin or the big end bearing is designed for the maximum gas force \(F_L \), therefore, equating the load on the crankpin or big end bearing to the maximum gas force, \(i.e.\)
\[
13 (d_c)^2 = F_L = 24740 \text{ N}
\]
\[
\therefore (d_c)^2 = 24740 / 13 = 1903 \quad \text{or } d_c = 43.6 \text{ say 44 mm Ans.}
\]
and \(l_c = 1.3 d_c = 1.3 \times 44 = 57.2 \text{ say 58 mm Ans.} \)

The big end has removable precision bearing shells of brass or bronze or steel with a thin lining (1mm or less) of bearing metal such as babbit.

Again, let \(d_p \) = Diameter of the piston pin or small end bearing,
\[
l_p = \text{Length of the piston pin or small end bearing } = 2 d_p \quad ...(\text{Given})
\]
\[
p_{bp} = \text{Bearing pressure } = 15 \text{ N/mm}^2 \quad...(\text{Given})
\]

We know that the load on the piston pin or small end bearing
\[
= \text{Project area } \times \text{Bearing pressure } = d_p \cdot l_p \cdot p_{bp} = d_p \times 2 d_p \times 15 = 30 (d_p)^2
\]
Since the piston pin or the small end bearing is designed for the maximum gas force \(F_L \), therefore, equating the load on the piston pin or the small end bearing to the maximum gas force, \(i.e.\)
\[
30 (d_p)^2 = 24740 \text{ N}
\]
\[
\therefore (d_p)^2 = 24740 / 30 = 825 \quad \text{or } d_p = 28.7 \text{ say 29 mm Ans.}
\]
and \(l_p = 2 d_p = 2 \times 29 = 58 \text{ mm Ans.} \)
The small end bearing is usually a phosphor bronze bush of about 3 mm thickness.

3. **Size of bolts for securing the big end cap**

Let \(d_{cb} \) = Core diameter of the bolts,
\[
\sigma_s = \text{Allowable tensile stress for the material of the bolts} = 60 \text{ N/mm}^2 \quad \ldots \text{(Given)}
\]
and \(n_b \) = Number of bolts. Generally two bolts are used.

We know that force on the bolts
\[
= \frac{\pi}{4}(d_{cb})^2 \sigma_s \times n_b = \frac{\pi}{4}(d_{cb})^2 \times 60 \times 2 = 94.26 (d_{cb})^2
\]

The bolts and the big end cap are subjected to tensile force which corresponds to the inertia force of the reciprocating parts at the top dead centre on the exhaust stroke. We know that inertia force of the reciprocating parts,
\[
F_I = mR \omega^2 \left(\cos \theta + \frac{\cos 20}{1+r} \right)
\]

We also know that at top dead centre on the exhaust stroke, \(\theta = 0 \).

\[
\therefore \quad F_I = mR \omega^2 \left(1 + \frac{r}{1} \right) = 2.25 \left(\frac{2 \pi \times 1800}{60} \right)^2 \times 0.095 \left(1 + \frac{0.995}{0.38} \right) N
\]

Equating the inertia force to the force on the bolts, we have
\[
9490 = 94.26 (d_{cb})^2 \quad \text{or} \quad (d_{cb})^2 = \frac{9490}{94.26} = 100.7
\]

\[
\therefore \quad d_{cb} = 10.03 \text{ mm}
\]

and nominal diameter of the bolt,
\[
d_b = \frac{d_{cb}}{0.84} = \frac{10.03}{0.84} = 11.94 \text{ mm} \quad \text{Ans.}
\]

4. **Thickness of the big end cap**

Let \(t_c \) = Thickness of the big end cap,
\[
b_c = \text{Width of the big end cap. It is taken equal to the length of the crankpin or big end bearing} (l_c) = 58 \text{ mm (calculated above)}
\]
\[
\sigma_b = \text{Allowable bending stress for the material of the cap} = 80 \text{ N/mm}^2 \quad \ldots \text{(Given)}
\]

The big end cap is designed as a beam freely supported at the cap bolt centres and loaded by the inertia force at the top dead centre on the exhaust stroke \(i.e. F_I \) when \(\theta = 0 \). Since the load is assumed to act in between the uniformly distributed load and the centrally concentrated load, therefore, maximum bending moment is taken as
\[
M_c = \frac{F_I \times x}{6}
\]
where \(x \) = Distance between the bolt centres
\[= \text{Dia. of crank pin or big end bearing + } 2 \times \text{Thickness of bearing liner + Nominal dia. of bolt + Clearance} \]
\[= (d_c + 2 \times 3 + d_b + 3) \text{ mm} = 44 + 6 + 12 + 3 = 65 \text{ mm} \]

∴ Maximum bending moment acting on the cap,
\[M_C = \frac{F_l \times x}{6} = \frac{9490 \times 65}{6} = 102810 \text{ N-mm} \]

Section modulus for the cap
\[Z_C = \frac{b_c \times (t_c)^2}{6} = \frac{58(t_c)^2}{6} = 9.7 (t_c)^2 \]

We know that bending stress (\(\sigma_b \)),
\[80 = \frac{M_C}{Z_C} = \frac{102810}{9.7 (t_c)^2} = \frac{10600}{(t_c)^2} \]

∴ \((t_c)^2 = 10600/80 = 132.5\) or \(t_c = 11.5\) mm Ans.

Let us now check the design for the induced bending stress due to inertia bending forces on the connecting rod \(i.e.\) whipping stress.

We know that mass of the connecting rod per metre length,
\[m_1 = \text{Volume } \times \text{density} = \text{Area } \times \text{length } \times \text{density} \]
\[= A \times l \times \rho = 11t^2 \times l \times \rho \]
\[= 11(0.0007)^2 (0.38) 8000 = 1.64 \text{ kg} \]
\[\therefore \rho = 8000 \text{ kg/m}^3 \text{ (given)} \]

∴ Maximum bending moment,
\[M_{\text{max}} = m \cdot \omega^2 \cdot r \times \frac{l}{9\sqrt{3}} = m_1 \cdot \omega^2 \cdot r \times \frac{l^2}{9\sqrt{3}} \]
\[= 1.64 \left(\frac{2\pi \times 1800}{60}\right)^2 (0.095) (0.38)^2 \frac{9}{\sqrt{3}} = 51.3 \text{ N-m} \]
\[= 51300 \text{ N-mm} \]

and section modulus, \[Z_{xt} = \frac{I_{xt}}{S_{xt}} = \frac{419 t^4}{12} \times \frac{2}{5} = 13.97 t^3 = 13.97 \times 7^3 = 4792 \text{ mm}^3 \]

∴ Maximum bending stress \(i.e.\) due to inertia bending forces or whipping stress,
\[\sigma_{b,\text{max}} = \frac{M_{\text{max}}}{Z_{xt}} = \frac{51300}{4792} = 10.7 \text{ N/mm}^2 \]

Since the maximum bending stress induced is less than the allowable bending stress of 80 N mm\(^2\), therefore the design is safe.
32.16 Crankshaft

A crankshaft (i.e. a shaft with a crank) is used to convert reciprocating motion of the piston into rotatory motion or vice versa. The crankshaft consists of the shaft parts which revolve in the main bearings, the crankpins to which the big ends of the connecting rod are connected, the crank arms or webs (also called cheeks) which connect the crankpins and the shaft parts. The crankshaft, depending upon the position of crank, may be divided into the following two types:

1. Side crankshaft or overhung crankshaft, as shown in Fig. 32.15(a), and
2. Centre crankshaft, as shown in Fig. 32.15(b).

![Fig. 32.15. Types of crankshafts.](image)

The crankshaft, depending upon the number of cranks in the shaft, may also be classified as single throw or multi-throw crankshafts. A crankhaft with only one side crank or centre crank is called a single throw crankshaft whereas the crankshaft with two side cranks, one on each end or with two or more centre cranks is known as multi-throw crankshaft.

The side crankshafts are used for medium and large size horizontal engines.

32.17 Material and manufacture of Crankshafts

The crankshafts are subjected to shock and fatigue loads. Thus material of the crankshaft should be tough and fatigue resistant. The crankshafts are generally made of carbon steel, special steel or special cast iron.

In industrial engines, the crankshafts are commonly made from carbon steel such as 40 C 8, 55 C 8 and 60 C 4. In transport engines, manganese steel such as 20 Mn 2, 27 Mn 2 and 37 Mn 2 are generally used for the making of crankshaft. In aero engines, nickel chromium steel such as 35 Ni 1 Cr 60 and 40 Ni 2 Cr 1 Mo 28 are extensively used for the crankshaft.

The crankshafts are made by drop forging or casting process but the former method is more common. The surface of the crankpin is hardened by case carburizing, nitriding or induction hardening.

32.18 Bearing Pressures and Stresses in Crankshaft

The bearing pressures are very important in the design of crankshafts. The maximum permissible bearing pressure depends upon the maximum gas pressure, journal velocity, amount and method of lubrication and change of direction of bearing pressure.

The following two types of stresses are induced in the crankshaft.

1. Bending stress; and 2. Shear stress due to torsional moment on the shaft.

* The values of maximum permissible bearing pressures for different types of engines are given in Chapter 26, Table 26.3.
Most crankshaft failures are caused by a progressive fracture due to repeated bending or reversed torsional stresses. Thus the crankshaft is under fatigue loading and, therefore, its design should be based upon endurance limit. Since the failure of a crankshaft is likely to cause a serious engine destruction and neither all the forces nor all the stresses acting on the crankshaft can be determined accurately, therefore a high factor of safety from 3 to 4, based on the endurance limit, is used.

The following table shows the allowable bending and shear stresses for some commonly used materials for crankshafts:

<table>
<thead>
<tr>
<th>Material</th>
<th>Endurance limit in MPa</th>
<th>Allowable stress in MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bending</td>
<td>Shear</td>
</tr>
<tr>
<td>Chrome nickel</td>
<td>525</td>
<td>290</td>
</tr>
<tr>
<td>Carbon steel and cast steel</td>
<td>225</td>
<td>124</td>
</tr>
<tr>
<td>Alloy cast iron</td>
<td>140</td>
<td>140</td>
</tr>
</tbody>
</table>

32.19 Design Procedure for Crankshaft

The following procedure may be adopted for designing a crankshaft.

1. First of all, find the magnitude of the various loads on the crankshaft.
2. Determine the distances between the supports and their position with respect to the loads.
3. For the sake of simplicity and also for safety, the shaft is considered to be supported at the centres of the bearings and all the forces and reactions to be acting at these points. The distances between the supports depend on the length of the bearings, which in turn depend on the diameter of the shaft because of the allowable bearing pressures.
4. The thickness of the cheeks or webs is assumed to be from $0.4 \times d_s$ to $0.6 \times d_s$, where d_s is the diameter of the shaft. It may also be taken as $0.22D$ to $0.32D$, where D is the bore of cylinder in mm.
5. Now calculate the distances between the supports.
6. Assuming the allowable bending and shear stresses, determine the main dimensions of the crankshaft.

Notes:
1. The crankshaft must be designed or checked for at least two crank positions. Firstly, when the crankshaft is subjected to maximum bending moment and secondly when the crankshaft is subjected to maximum twisting moment or torque.
2. The additional moment due to weight of flywheel, belt tension and other forces must be considered.
3. It is assumed that the effect of bending moment does not exceed two bearings between which a force is considered.

32.20 Design of Centre Crankshaft

We shall design the centre crankshaft by considering the two crank positions, _i.e._ when the crank is at dead centre (or when the crankshaft is subjected to maximum bending moment) and when the crank is at angle at which the twisting moment is maximum. These two cases are discussed in detail as below:

1. **When the crank is at dead centre.** At this position of the crank, the maximum gas pressure on the piston will transmit maximum force on the crankpin in the plane of the crank causing only bending of the shaft. The crankpin as well as ends of the crankshaft will be only subjected to bending moment. Thus, when the crank is at the dead centre, the bending moment on the shaft is maximum and the twisting moment is zero.
Consider a single throw three bearing crankshaft as shown in Fig. 32.16.

Let \(D \) = Piston diameter or cylinder bore in mm,
\(p \) = Maximum intensity of pressure on the piston in N/mm\(^2\),
\(W \) = Weight of the flywheel acting downwards in N, and
\(*T_1 + T_2 \) = Resultant belt tension or pull acting horizontally in N.

The thrust in the connecting rod will be equal to the gas load on the piston (\(F_p \)). We know that
gas load on the piston,

\[
F_p = \frac{\pi}{4} \times D^2 \times p
\]

Due to this piston gas load (\(F_p \)) acting horizontally, there will be two horizontal reactions \(H_1 \) and \(H_2 \) at bearings 1 and 2 respectively, such that

\[H_1 = \frac{F_p \times h_1}{b} ; \quad \text{and} \quad H_2 = \frac{F_p \times h_2}{b} \]

Due to the weight of the flywheel (\(W \)) acting downwards, there will be two vertical reactions \(V_2 \) and \(V_3 \) at bearings 2 and 3 respectively, such that

\[V_2 = \frac{W \times c_1}{c} ; \quad \text{and} \quad V_3 = \frac{W \times c_2}{c} \]

Now due to the resultant belt tension (\(T_1 + T_2 \)), acting horizontally, there will be two horizontal reactions \(H'_2 \) and \(H'_3 \) at bearings 2 and 3 respectively, such that

\[H'_2 = \frac{(T_1 + T_2) \times c_1}{c} ; \quad \text{and} \quad H'_3 = \frac{(T_1 + T_2) \times c_2}{c} \]

The resultant force at bearing 2 is given by

\[R_2 = \sqrt{(H_2 + H'_2)^2 + (V_2)^2} \]

* \(T_1 \) is the belt tension in the tight side and \(T_2 \) is the belt tension in the slack side.
and the resultant force at bearing 3 is given by
\[R_3 = \sqrt{(H_3)^2 + (V_3)^2} \]

Now the various parts of the centre crankshaft are designed for bending only, as discussed below:

(a) Design of crankpin

Let
\[d_c = \text{Diameter of the crankpin in mm}, \]
\[l_c = \text{Length of the crankpin in mm}, \]
\[\sigma_b = \text{Allowable bending stress for the crankpin in N/mm}^2. \]

We know that bending moment at the centre of the crankpin,
\[M_c = H_1 \cdot b_2 \] \hspace{1cm} ...(i)

We also know that
\[M_c = \frac{\pi}{32} (d_c)^3 \sigma_b \] \hspace{1cm} ...(ii)

From equations (i) and (ii), diameter of the crankpin is determined. The length of the crankpin is given by
\[l_c = \frac{F_p}{d_c \cdot p_b} \]
where \(p_b = \text{Permissible bearing pressure in N/mm}^2. \)

(b) Design of left hand crank web.

The crank web is designed for eccentric loading. There will be two stresses acting on the crank web, one is direct compressive stress and the other is bending stress due to piston gas load \((F_p) \).
The thickness \(t \) of the crank web is given empirically as
\[
t = 0.4 \, d_s \text{ to } 0.6 \, d_s = 0.22 \, D \text{ to } 0.32 \, D = 0.65 \, d_c + 6.35 \text{ mm}
\]
where
\(d_s \) = Shaft diameter in mm,
\(D \) = Bore diameter in mm, and
\(d_c \) = Crankpin diameter in mm,

The width of crank web \(w \) is taken as
\[
w = 1.125 \, d_c + 12.7 \text{ mm}
\]

We know that maximum bending moment on the crank web,
\[
M = H_1 \left(b_2 - \frac{l_c}{2} - \frac{t}{2} \right)
\]
and section modulus,
\[
Z = \frac{1}{6} \times w \cdot t^2
\]

\[\therefore \text{ Bending stress, } \sigma_b = \frac{M}{Z} = \frac{6H_1 \left(b_2 - \frac{l_c}{2} - \frac{t}{2} \right)}{w \cdot t^2}\]

and direct compressive stress on the crank web,
\[\sigma_c = \frac{H_1}{w \cdot t}\]

\[\therefore \text{ Total stress on the crank web} = \sigma_b + \sigma_c = \frac{6H_1 \left(b_2 - \frac{l_c}{2} - \frac{t}{2} \right)}{w \cdot t^2} + \frac{H_1}{w \cdot t}\]

This total stress should be less than the permissible bending stress.

(c) Design of right hand crank web

The dimensions of the right hand crank web (i.e. thickness and width) are made equal to left hand crank web from the balancing point of view.

(d) Design of shaft under the flywheel

Let
\(d_s \) = Diameter of shaft in mm.

We know that bending moment due to the weight of flywheel,
\[M_W = V_3 \cdot c_1\]
and bending moment due to belt tension,
\[M_T = H_3' \cdot c_1\]

These two bending moments act at right angles to each other. Therefore, the resultant bending moment at the flywheel location,
\[M_S = \sqrt{(M_W)^2 + (M_T)^2} = \sqrt{(V_3 \cdot c_1)^2 + (H_3' \cdot c_1)^2} \quad \text{... (i)}\]

We also know that the bending moment at the shaft,
\[M_s = \frac{\pi}{32} (d_s)^3 \sigma_b \quad \text{... (ii)}\]

where
\(\sigma_b \) = Allowable bending stress in N/mm\(^2\).

From equations (i) and (ii), we may determine the shaft diameter \(d_s \).
2. When the crank is at an angle of maximum twisting moment

The twisting moment on the crankshaft will be maximum when the tangential force on the crank \((F_T)\) is maximum. The maximum value of tangential force lies when the crank is at angle of 25° to 30° from the dead centre for a constant volume combustion (i.e petrol engines) and 30° to 40° for constant pressure combustion engines (i.e. diesel engines).

Consider a position of the crank at angle of maximum twisting moment as shown in Fig. 32.17 \((a)\). If \(p'\) is the intensity of pressure on the piston at this instant, then the piston gas load at this position of crank,

\[
F_p = \frac{\pi}{4} \times D^2 \times p'
\]

and thrust on the connecting rod,

\[
F_Q = \frac{F_p}{\cos \phi}
\]

where \(\phi = \text{Angle of inclination of the connecting rod with the line of stroke PO.}\)

The thrust in the connecting rod \((F_Q)\) may be divided into two components, one perpendicular to the crank and the other along the crank. The component of \(F_Q\) perpendicular to the crank is the tangential force \((F_T)\) and the component of \(F_Q\) along the crank is the radial force \((F_R)\) which produces thrust on the crankshaft bearings. From Fig. 32.17 \((b)\), we find that

\[
F_T = F_Q \sin (\theta + \phi)
\]

and
\[
F_R = F_Q \cos (\theta + \phi)
\]

It may be noted that the tangential force will cause twisting of the crankpin and shaft while the radial force will cause bending of the shaft.

* For further details, see Author’s popular book on “Theory of Machines”.*
Due to the tangential force \((F_T)\), there will be two reactions at bearings 1 and 2, such that

\[H_{T1} = \frac{F_T \times b_1}{b}; \quad \text{and} \quad H_{T2} = \frac{F_T \times b_2}{b} \]

Due to the radial force \((F_R)\), there will be two reactions at the bearings 1 and 2, such that

\[H_{R1} = \frac{F_R \times b_1}{b}; \quad \text{and} \quad H_{R2} = \frac{F_R \times b_2}{b} \]

The reactions at the bearings 2 and 3, due to the flywheel weight \((W)\) and resultant belt pull \((T_1 + T_2)\) will be same as discussed earlier.

Now the various parts of the crankshaft are designed as discussed below:

(a) Design of crankpin

Let \(d_c\) = Diameter of the crankpin in mm.

We know that bending moment at the centre of the crankpin,

\[M_c = H_{R1} \times b_2 \]

and twisting moment on the crankpin,

\[T_c = H_{T1} \times r \]

\[\therefore \text{Equivalent twisting moment on the crankpin,} \]

\[T_e = \sqrt{(M_c)^2 + (T_c)^2} = \sqrt{(H_{R1} \times b_2)^2 + (H_{T1} \times r)^2} \] \(\ldots(i)\)

We also know that twisting moment on the crankpin,

\[T_e = \frac{\pi}{16}(d_c)^3 \tau \] \(\ldots(ii)\)

where \(\tau\) = Allowable shear stress in the crankpin.

From equations \((i)\) and \((ii)\), the diameter of the crankpin is determined.
Design of shaft under the flywheel

Let \(d_s \) = Diameter of the shaft in mm.
We know that bending moment on the shaft,
\[
M_s = R_3 \times c_1
\]
and twisting moment on the shaft,
\[
T_s = F_T \times r
\]
\[\therefore\] Equivalent twisting moment on the shaft,
\[
T_e = \sqrt{(M_s)^2 + (T_s)^2} = \sqrt{(R_3 \times c_1)^2 + (F_T \times r)^2}
\] ... (i)
We also know that equivalent twisting moment on the shaft,
\[
T_e = \frac{\pi}{16}(d_s)^3 \tau
\] ... (ii)
where \(\tau \) = Allowable shear stress in the shaft.
From equation (i) and (ii), the diameter of the shaft is determined.

Design of shaft at the juncture of right hand crank arm

Let \(d_{s1} \) = Diameter of the shaft at the juncture of right hand crank arm.
We know that bending moment at the juncture of the right hand crank arm,
\[
M_{s1} = R_1 \left(b_2 + \frac{l_c}{2} + \frac{t}{2} \right) - F_Q \left(\frac{l_c}{2} + \frac{t}{2} \right)
\]
and the twisting moment at the juncture of the right hand crank arm,
\[
T_{s1} = F_T \times r
\]
\[\therefore\] Equivalent twisting moment at the juncture of the right hand crank arm,
\[
T_e = \sqrt{(M_{s1})^2 + (T_{s1})^2}
\] ... (i)
We also know that equivalent twisting moment,
\[
T_e = \frac{\pi}{16}(d_{s1})^3 \tau
\] ... (ii)
where \(\tau \) = Allowable shear stress in the shaft.
From equations (i) and (ii), the diameter of the shaft at the juncture of the right hand crank arm is determined.

Design of right hand crank web

The right hand crank web is subjected to the following stresses:

(i) Bending stresses in two planes normal to each other, due to the radial and tangential components of \(F_Q \).
(ii) Direct compressive stress due to \(F_R \) and
(iii) Torsional stress.

The bending moment due to the radial component of \(F_Q \) is given by,
\[
M_R = H_{R2} \left(l_b - \frac{l_c}{2} - \frac{t}{2} \right)
\] ... (i)
We also know that \(M_R = \sigma_{\delta R} \times Z = \sigma_{\delta R} \times \frac{1}{6} \times w \cdot r^2 \) ... (ii)
where \(\sigma_{br} \) = Bending stress in the radial direction, and
\[
Z = \text{Section modulus} = \frac{1}{6} \times w \cdot t^2
\]

From equation \((i)\) and \((ii)\), the value of bending stress \(\sigma_{br}\) is determined.

The bending moment due to the tangential component of \(F_Q\) is maximum at the juncture of crank and shaft. It is given by
\[
M_T = F_T \left[r - \frac{d_{s1}}{2}\right]
\]
... \((iii)\)
where \(d_{s1}\) = Shaft diameter at juncture of right hand crank arm, \(i.e.,\) at bearing 2.

We also know that
\[
M_T = \sigma_{bt} \times Z = \sigma_{bt} \times \frac{1}{6} \times w \cdot t^2
\]
... \((iv)\)
where \(\sigma_{bt}\) = Bending stress in tangential direction.

From equations \((iii)\) and \((iv)\), the value of bending stress \(\sigma_{bt}\) is determined.

The direct compressive stress is given by,
\[
\sigma_d = \frac{F_w}{2 \cdot w \cdot t}
\]

The maximum compressive stress \((\sigma_c)\) will occur at the upper left corner of the cross-section of the crank.

\[
\therefore \sigma_c = \sigma_{br} + \sigma_{bt} + \sigma_d
\]

Now, the twisting moment on the arm,
\[
T = H_{T1} \left(b_2 + \frac{l_2}{2}\right) - F_T \times \frac{l_2}{2} = H_{T2} \left(b_1 - \frac{l_1}{2}\right)
\]

We know that shear stress on the arm,
\[
\tau = \frac{T}{Z_p} = \frac{4.5 T}{w \cdot t^2}
\]
where \(Z_p\) = Polar section modulus = \(\frac{w \cdot t^2}{4.5}\)

\[
\therefore \text{Maximum or total combined stress,}
(\sigma_c)_{max} = \frac{\sigma_c}{2} + \frac{1}{2} \sqrt{(\sigma_c)^2 + 4\tau^2}
\]
The value of $(\sigma)_{max}$ should be within safe limits. If it exceeds the safe value, then the dimension w may be increased because it does not affect other dimensions.

(e) Design of left hand crank web
Since the left hand crank web is not stressed to the extent as the right hand crank web, therefore, the dimensions for the left hand crank web may be made same as for right hand crank web.

(f) Design of crankshaft bearings
The bearing 2 is the most heavily loaded and should be checked for the safe bearing pressure.

We know that the total reaction at the bearing 2,

$$ R_2 = \frac{F_p}{2} + \frac{W}{2} + \frac{T_2 + T_3}{2} $$

∴ Total bearing pressure $\frac{R_2}{l_2 d_{sl}}$

where $l_2 = \text{Length of bearing 2}$.

32.21 Side or Overhung Crankshaft
The side or overhung crankshafts are used for medium size and large horizontal engines. Its main advantage is that it requires only two bearings in either the single or two crank construction. The design procedure for the side or overhung crankshaft is same as that for centre crankshaft. Let us now design the side crankshaft by considering the two crank positions, i.e. when the crank is at dead centre (or when the crankshaft is subjected to maximum bending moment) and when the crank is at an angle at which the twisting moment is maximum. These two cases are discussed in detail as below:

1. When the crank is at dead centre. Consider a side crankshaft at dead centre with its loads and distances of their application, as shown in Fig. 32.18.
Let $D =$ Piston diameter or cylinder bore in mm,
$p =$ Maximum intensity of pressure on the piston in N/mm^2,
$W =$ Weight of the flywheel acting downwards in N, and
$T_1 + T_2 =$ Resultant belt tension or pull acting horizontally in N.

We know that gas load on the piston,

$$F_p = \frac{\pi}{4} \times D^2 \times p$$

Due to this piston gas load (F_p) acting horizontally, there will be two horizontal reactions H_1 and H_2 at bearings 1 and 2 respectively, such that

$$H_1 = \frac{F_p (a + b)}{b} \quad \text{and} \quad H_2 = \frac{F_p \times a}{b}$$

Due to the weight of the flywheel (W) acting downwards, there will be two vertical reactions V_1 and V_2 at bearings 1 and 2 respectively, such that

$$V_1 = \frac{W.b_1}{b} \quad \text{and} \quad V_2 = \frac{W.b_2}{b}$$

Now due to the resultant belt tension ($T_1 + T_2$) acting horizontally, there will be two horizontal reactions H_1' and H_2' at bearings 1 and 2 respectively, such that

$$H_1' = \frac{(T_1 + T_2)b_1}{b} \quad \text{and} \quad H_2' = \frac{(T_1 + T_2)b_2}{b}$$

The various parts of the side crankshaft, when the crank is at dead centre, are now designed as discussed below:

(a) Design of crankpin. The dimensions of the crankpin are obtained by considering the crankpin in bearing and then checked for bending stress.

Let
$$d_c =$ Diameter of the crankpin in mm,
$$l_c =$ Length of the crankpin in mm, and
$$p_b =$ Safe bearing pressure on the pin in N/mm^2. It may be between 9.8 to 12.6 N/mm^2.

We know that

$$F_p = d_c \times l_c \times p_b$$

From this expression, the values of d_c and l_c may be obtained. The length of crankpin is usually from 0.6 to 1.5 times the diameter of pin.

The crankpin is now checked for bending stress. If it is assumed that the crankpin acts as a cantilever and the load on the crankpin is uniformly distributed, then maximum bending moment will be $\frac{F_p \times l_c}{2}$. But in actual practice, the bearing pressure on the crankpin is not uniformly distributed and may, therefore, give a greater value of bending moment ranging between $\frac{F_p \times l_c}{2}$ and $F_p \times l_c$. So, a mean value of bending moment, i.e. $\frac{3}{4} F_p \times l_c$ may be assumed.
Maximum bending moment at the crankpin,

\[M = \frac{3}{4} F_p \times l_c \]

... (Neglecting pin collar thickness)

Section modulus for the crankpin,

\[Z = \frac{\pi}{32} (d_c)^3 \]

Bending stress induced,

\[\sigma_b = \frac{M}{Z} \]

This induced bending stress should be within the permissible limits.

Design of bearings. The bending moment at the centre of the bearing 1 is given by

\[M = F_p (0.75 l_c + t + 0.5 l_1) \]

... (i)

where

\[l_c = \text{Length of the crankpin}, \]

\[t = \text{Thickness of the crank web} = 0.45 d_c \text{ to } 0.75 d_c, \text{ and} \]

\[l_1 = \text{Length of the bearing} = 1.5 d_c \text{ to } 2 d_c. \]

We also know that

\[M = \frac{\pi}{32} (d_1)^3 \sigma_b \]

... (ii)

From equations (i) and (ii), the diameter of the bearing 1 may be determined.

Note: The bearing 2 is also made of the same diameter. The length of the bearings are found on the basis of allowable bearing pressures and the maximum reactions at the bearings.

Design of crank web. When the crank is at dead centre, the crank web is subjected to a bending moment and to a direct compressive stress.

We know that bending moment on the crank web,

\[M = F_p (0.75 l_c + 0.5 t) \]

and section modulus, \(Z = \frac{1}{6} \times w \cdot t^2 \)

Bending stress, \(\sigma_b = \frac{M}{Z} \)

We also know that direct compressive stress,

\[\sigma_d = \frac{F_p}{w \cdot t} \]

Total stress on the crank web,

\[\sigma_T = \sigma_b + \sigma_d \]

This total stress should be less than the permissible limits.

Design of shaft under the flywheel. The total bending moment at the flywheel location will be the resultant of horizontal bending moment due to the gas load and belt pull and the vertical bending moment due to the flywheel weight.

Let \(d_s = \text{Diameter of shaft under the flywheel}. \)

We know that horizontal bending moment at the flywheel location due to piston gas load,

\[M_1 = F_p (a + b_2) - H_1 \cdot b_2 = H_2 \cdot b_1 \]
and horizontal bending moment at the flywheel location due to belt pull,
\[M_2 = H_1' b_2 = H_2' b_1 = \frac{(T_1 + T_2) b_1 b_2}{b} \]
\[\therefore \text{Total horizontal bending moment,} \]
\[M_H = M_1 + M_2 \]
We know that vertical bending moment due to flywheel weight,
\[M_V = V_1 b_2 = V_2 b_1 = \frac{W b_2}{b} \]
\[\therefore \text{Resultant bending moment,} \]
\[M_R = \sqrt{(M_H)^2 + (M_V)^2} \]
\[\text{...(i)} \]
We also know that
\[M_R = \frac{\pi}{32} (d_x^3 \sigma_b) \]
\[\text{...(ii)} \]
From equations (i) and (ii), the diameter of shaft \((d_x)\) may be determined.

2. **When the crank is at an angle of maximum twisting moment.** Consider a position of the crank at an angle of maximum twisting moment as shown in Fig. 32.19. We have already discussed in the design of a centre crankshaft that the thrust in the connecting rod \((F_Q)\) gives rise to the tangential force \((F_T)\) and the radial force \((F_R)\).

\[\text{Fig. 32.19. Crank at an angle of maximum twisting moment.} \]

Due to the tangential force \((F_T)\), there will be two reactions at the bearings 1 and 2, such that
\[H_{T1} = \frac{F_T (a + b)}{b} \quad \text{and} \quad H_{T2} = \frac{F_T \times a}{b} \]

Due to the radial force \((F_R)\), there will be two reactions at the bearings 1 and 2, such that
\[H_{R1} = \frac{F_R (a + b)}{b} \quad \text{and} \quad H_{R2} = \frac{F_R \times a}{b} \]

The reactions at the bearings 1 and 2 due to the flywheel weight \((W)\) and resultant belt pull \((T_1 + T_2)\) will be same as discussed earlier.

Now the various parts of the crankshaft are designed as discussed below:

(a) **Design of crank web.** The most critical section is where the web joins the shaft. This section is subjected to the following stresses:

(i) Bending stress due to the tangential force \((F_T)\);
(ii) Bending stress due to the radial force F_R;
(iii) Direct compressive stress due to the radial force F_R; and
(iv) Shear stress due to the twisting moment of F_T.

We know that bending moment due to the tangential force,

$$M_{BT} = F_T \left(r - \frac{d_1}{2} \right)$$

where $d_1 = $ Diameter of the bearing 1.

$$σ_{BT} = \frac{M_{BT}}{Z} = \frac{6M_{BT}}{t \cdot w^2}$$

...(\because Z = \frac{1}{6} \times t \cdot w^2) \ldots (i)$$

We know that bending moment due to the radial force,

$$M_{BR} = F_R (0.75 l_c + 0.5 t)$$

\.

Bending stress due to the radial force,

$$σ_{BR} = \frac{M_{BR}}{Z} = \frac{6M_{BR}}{w \cdot t^2}$$

...(Here $Z = \frac{1}{6} \times w^2 \cdot t^2$) \ldots (ii)

We know that direct compressive stress,

$$σ_d = \frac{F_R}{w \cdot t}$$

... (iii)

\.

Total compressive stress,

$$σ_c = σ_{BT} + σ_{BR} + σ_d$$

...(iv)

We know that twisting moment due to the tangential force,

$$T = F_T (0.75 l_c + 0.5 t)$$

\.

Shear stress,

$$τ = \frac{T}{Z_p} = \frac{4.5T}{w \cdot t^2}$$

where $Z_p = $ Polar section modulus $= \frac{w \cdot t^2}{4.5}$
Now the total or maximum stress is given by

\[\sigma_{\text{max}} = \frac{\sigma_c}{2} + \frac{1}{2} \sqrt{\left(\sigma_c\right)^2 + 4 \tau^2} \]

...(v)

This total maximum stress should be less than the maximum allowable stress.

(b) Design of shaft at the junction of crank

Let \[d_{s1} = \text{Diameter of the shaft at the junction of the crank.} \]

We know that bending moment at the junction of the crank, \[M = F_Q (0.75l_c + t) \]

and twisting moment on the shaft \[T = F_T \times r \]

\[\therefore \text{Equivalent twisting moment,} \]

\[T_e = \sqrt{M^2 + T^2} \]

...(i)

We also know that equivalent twisting moment,

\[T_e = \frac{\pi}{16} (d_{s1})^3 \tau \]

...(ii)

From equations (i) and (ii), the diameter of the shaft at the junction of the crank \(d_{s1} \) may be determined.

(c) Design of shaft under the flywheel

Let \[d_{s3} = \text{Diameter of shaft under the flywheel.} \]

The resultant bending moment \(M_R \) acting on the shaft is obtained in the similar way as discussed for dead centre position.

We know that horizontal bending moment acting on the shaft due to piston gas load,

\[M_1 = F_p (a + b) - \left[\sqrt{(H'_{R1})^2 + (H'_{T1})^2} \right] b_2 \]

and horizontal bending moment at the flywheel location due to belt pull,

\[M_2 = H'_{R2} b_2 = H'_{T2} b_1 = \frac{(T_1 + T_2) b_1 b_2}{b} \]

\[\therefore \text{Total horizontal bending moment,} \]

\[M_{H1} = M_1 + M_2 \]

Vertical bending moment due to the flywheel weight,

\[M_V = V_1 b_2 = V_2 b_1 = \frac{W b_1 b_2}{b} \]

\[\therefore \text{Resultant bending moment,} \]

\[M_R = \sqrt{(M_{H1})^2 + (M_V)^2} \]

We know that twisting moment on the shaft,

\[T = F_T \times r \]

\[\therefore \text{Equivalent twisting moment,} \]

\[T_e = \sqrt{(M_R)^2 + T^2} \]

...(i)

We also know that equivalent twisting moment,

\[T_e = \frac{\pi}{16} (d_{s3})^3 \tau \]

...(ii)

From equations (i) and (ii), the diameter of shaft under the flywheel \(d_{s3} \) may be determined.

Example 32.4. Design a plain carbon steel centre crankshaft for a single acting four stroke single cylinder engine for the following data:
1176 A Textbook of Machine Design

Bore = 400 mm; Stroke = 600 mm; Engine speed = 200 r.p.m.; Mean effective pressure = 0.5 N/mm²; Maximum combustion pressure = 2.5 N/mm²; Weight of flywheel used as a pulley = 50 kN; Total belt pull = 6.5 kN.

When the crank has turned through 35° from the top dead centre, the pressure on the piston is 1 N/mm² and the torque on the crank is maximum. The ratio of the connecting rod length to the crank radius is 5. Assume any other data required for the design.

Solution. Given: \(D = 400 \text{ mm} \); \(L = 600 \text{ mm} \) or \(r = 300 \text{ mm} \); \(p_m = 0.5 \text{ N/mm}^2 \); \(p = 2.5 \text{ N/mm}^2 \); \(W = 50 \text{ kN} \); \(T_1 + T_2 = 6.5 \text{ kN} \); \(\theta = 35^\circ \); \(p' = 1 \text{ N/mm}^2 \); \(l/r = 5 \)

We shall design the crankshaft for the two positions of the crank, i.e. firstly when the crank is at the dead centre; and secondly when the crank is at an angle of maximum twisting moment.

1. Design of the crankshaft when the crank is at the dead centre (See Fig. 32.18)

We know that the piston gas load,

\[
F_p = \frac{\pi}{4} D^2 \times p = \frac{\pi}{4} (400)^2 \times 2.5 = 314,200 \text{ N} = 314.2 \text{ kN}
\]

Assume that the distance (\(b \)) between the bearings 1 and 2 is equal to twice the piston diameter (\(D \)).

\[
\therefore \quad b = 2D = 2 \times 400 = 800 \text{ mm}
\]
and \(b_1 = b_2 = \frac{b}{2} = \frac{800}{2} = 400 \text{ mm} \)

We know that due to the piston gas load, there will be two horizontal reactions \(H_1 \) and \(H_2 \) at bearings 1 and 2 respectively, such that

\[
H_1 = \frac{F_p \times b_1}{b} = \frac{314.2 \times 400}{800} = 157.1 \text{ kN}
\]

and

\[
H_2 = \frac{F_p \times b_2}{b} = \frac{314.2 \times 400}{800} = 157.1 \text{ kN}
\]

Assume that the length of the main bearings to be equal, i.e. \(c_1 = c_2 = \frac{c}{2} \). We know that due to the weight of the flywheel acting downwards, there will be two vertical reactions \(V_2 \) and \(V_3 \) at bearings 2 and 3 respectively, such that

\[
V_2 = \frac{W \times c_1}{c} = \frac{W \times c/2}{c} = \frac{W}{2} = \frac{50}{2} = 25 \text{ kN}
\]

and

\[
V_3 = \frac{W \times c_2}{c} = \frac{W \times c/2}{c} = \frac{W}{2} = \frac{50}{2} = 25 \text{ kN}
\]

Due to the resultant belt tension \((T_1 + T_2) \) acting horizontally, there will be two horizontal reactions \(H_2' \) and \(H_3' \) respectively, such that

\[
H_2' = \frac{(T_1 + T_2) \times c_1}{c} = \frac{(T_1 + T_2) \times c/2}{c} = \frac{T_1 + T_2}{2} \times \frac{50}{2} = 6.5 = 3.25 \text{ kN}
\]

and

\[
H_3' = \frac{(T_1 + T_2) \times c_2}{c} = \frac{(T_1 + T_2) \times c/2}{c} = \frac{T_1 + T_2}{2} \times \frac{50}{2} = 6.5 = 3.25 \text{ kN}
\]

Now the various parts of the crankshaft are designed as discussed below:

(a) **Design of crankpin**

Let

- \(d_c \) = Diameter of the crankpin in mm;
- \(l_c \) = Length of the crankpin in mm; and
- \(\sigma_b \) = Allowable bending stress for the crankpin. It may be assumed as 75 MPa or N/mm².

We know that the bending moment at the centre of the crankpin,

\[
M_c = H_1 \times b_2 = 157.1 \times 400 = 62,840 \text{ kN-mm} \quad ...(i)
\]

We also know that

\[
M_c = \frac{\pi}{32} (d_c)^3 \sigma_b = \frac{\pi}{32} (d_c)^3 75 = 7.364(d_c)^3 \text{ N-mm} \]

\[
= 7.364 \times 10^{-3} (d_c)^3 \text{ kN-mm} \quad ...(ii)
\]

Equating equations (i) and (ii), we have

\[
(d_c)^3 = 62,840 / 7.364 \times 10^{-3} = 8.53 \times 10^6
\]

or

\[
d_c = 204.35 \text{ say 205 mm} \quad \text{Ans.}
\]

We know that length of the crankpin,

\[
l_c = \frac{F_p}{d_c \times p_b} = \frac{314.2 \times 10^3}{205 \times 10} = 153.3 \text{ say 155 mm} \quad \text{Ans.}
\]

...(Taking \(p_b = 10 \text{ N/mm}^2 \))

(b) **Design of left hand crank web**

We know that thickness of the crank web,

\[
t = 0.65 d_c + 6.35 \text{ mm}
\]

\[
= 0.65 \times 205 + 6.35 = 139.6 \text{ say 140 mm} \quad \text{Ans.}
\]
and width of the crank web, \(w = 1.125 \, d_c + 12.7 \, \text{mm} \)
\[= 1.125 \times 205 + 12.7 = 243.3 \, \text{say 245 mm} \text{ Ans.} \]

We know that maximum bending moment on the crank web,
\[M = H_1 \left(b_2 - \frac{l_c}{2} - \frac{l}{2} \right) \]
\[= 157.1 \left(400 - \frac{155}{2} - \frac{140}{2} \right) = 39 \, 668 \, \text{kN-mm} \]

Section modulus,
\[Z = \frac{1}{6} \times w \cdot t^2 = \frac{1}{6} \times 245 \times (140)^2 = 800 \times 10^3 \, \text{mm}^3 \]

\[\therefore \text{Bending stress, } \sigma_b = \frac{M}{Z} = \frac{39 \, 668}{800 \times 10^3} = 49.6 \times 10^{-3} \, \text{kN/mm}^2 = 49.6 \, \text{N/mm}^2 \]

We know that direct compressive stress on the crank web,
\[\sigma_c = \frac{H_1}{w \cdot t} = \frac{157.1}{245 \times 140} = 4.58 \times 10^{-3} \, \text{kN/mm}^2 = 4.58 \, \text{N/mm}^2 \]

\[\therefore \text{Total stress on the crank web } \]
\[= \sigma_b + \sigma_c = 49.6 + 4.58 = 54.18 \, \text{N/mm}^2 \text{ or MPa} \]

Since the total stress on the crank web is less than the allowable bending stress of 75 MPa, therefore, the design of the left hand crank web is safe.

(c) Design of right hand crank web

From the balancing point of view, the dimensions of the right hand crank web (i.e. thickness and width) are made equal to the dimensions of the left hand crank web.

(d) Design of shaft under the flywheel

Let \(d_s = \) Diameter of the shaft in mm.

Since the lengths of the main bearings are equal, therefore
\[l_1 = l_2 = l_3 = 2 \left(\frac{b}{2} - \frac{l_c}{2} - \frac{l}{2} \right) = 2 \left(\frac{400 - 155}{2} - 140 \right) = 365 \, \text{mm} \]

Assuming width of the flywheel as 300 mm, we have
\[c = 365 + 300 = 665 \, \text{mm} \]

Hydrostatic transmission inside a tractor engine
Allowing space for gearing and clearance, let us take \(c = 800 \text{ mm} \).

\[
\therefore \quad c_1 = c_2 = \frac{c}{2} = \frac{800}{2} = 400 \text{ mm}
\]

We know that bending moment due to the weight of flywheel,

\[
M_W = V_s \cdot c_1 = 25 \times 400 = 10,000 \text{ kN-mm} = 10 \times 10^6 \text{ N-mm}
\]

and bending moment due to the belt pull,

\[
M_T = H_3' \cdot c_1 = 3.25 \times 400 = 1300 \text{ kN-mm} = 1.3 \times 10^6 \text{ N-mm}
\]

\[
\therefore \text{ Resultant bending moment on the shaft,} \\
M_S = \sqrt{(M_W)^2 + (M_T)^2} = \sqrt{(10 \times 10^6)^2 + (1.3 \times 10^6)^2} \\
= 10.08 \times 10^6 \text{ N-mm}
\]

We also know that bending moment on the shaft \((M_S)\),

\[
10.08 \times 10^6 = \frac{\pi}{32} (d_s)^3 \sigma_b = \frac{\pi}{32} (d_s)^3 42 = 4.12 (d_s)^3 \\
\therefore \quad (d_s)^3 = 10.08 \times 10^6 / 4.12 = 2.45 \times 10^6 \text{ or } d_s = 134.7 \text{ say } 135 \text{ mm} \text{ Ans.}
\]

2. **Design of the crankshaft when the crank is at an angle of maximum twisting moment**

We also know that piston gas load,

\[
F_P = \frac{\pi}{4} \times D^2 \times p' = \frac{\pi}{4} (400)^2 1 = 125 \times 680 \text{ N} = 125.68 \text{ kN}
\]

In order to find the thrust in the connecting rod \((F_Q)\), we should first find out the angle of inclination of the connecting rod with the line of stroke \((i.e. \angle \phi)\). We know that

\[
\sin \phi = \frac{\sin \theta}{T/r} = \frac{\sin 35^\circ}{5} = 0.1147
\]

\[
\therefore \quad \phi = \sin^{-1} (0.1147) = 6.58^\circ
\]

We know that thrust in the connecting rod,

\[
F_Q = \frac{F_P}{\cos \phi} = \frac{125.68}{\cos 6.58^\circ} = 126.5 \text{ kN}
\]

Tangential force acting on the crankshaft,

\[
F_T = F_Q \sin (\theta + \phi) = 126.5 \sin (35^\circ + 6.58^\circ) = 84 \text{ kN}
\]

and radial force, \(F_R = F_Q \cos (\theta + \phi) = 126.5 \cos (35^\circ + 6.58^\circ) = 94.6 \text{ kN}

Due to the tangential force \((F_T)\), there will be two reactions at bearings 1 and 2, such that

\[
H_{T1} = \frac{F_T \times b_1}{b} = \frac{84 \times 400}{800} = 42 \text{ kN}
\]

and

\[
H_{T2} = \frac{F_T \times b_2}{b} = \frac{84 \times 400}{800} = 42 \text{ kN}
\]

Due to the radial force \((F_R)\), there will be two reactions at bearings 1 and 2, such that

\[
H_{R1} = \frac{F_R \times b_1}{b} = \frac{94.6 \times 400}{800} = 47.3 \text{ kN}
\]

\[
H_{R2} = \frac{F_R \times b_2}{b} = \frac{94.6 \times 400}{800} = 47.3 \text{ kN}
\]

Now the various parts of the crankshaft are designed as discussed below:

(a) **Design of crankpin**

Let \(d_c \) = Diameter of crankpin in mm.
We know that the bending moment at the centre of the crankpin,
\[M_C = H_{R1} \times b_2 = 47.3 \times 400 = 18920 \text{ kN-mm} \]
and twisting moment on the crankpin,
\[T_C = H_{T1} \times r = 42 \times 300 = 12600 \text{ kN-mm} \]
∴ Equivalent twisting moment on the crankpin,
\[T_e = \sqrt{(M_C)^2 + (T_C)^2} = \sqrt{(18920)^2 + (12600)^2} \]
\[= 22740 \text{ kN-mm} = 22.74 \times 10^6 \text{ N-mm} \]
We know that equivalent twisting moment \((T_e)\),
\[22.74 \times 10^6 = \frac{\pi}{16} (d_c)^3 \tau = \frac{\pi}{16} (d_c)^3 35 = 6.873 (d_c)^3 \]
...(Taking \(\tau = 35 \text{ MPa or N/mm}^2\))
∴ \((d_c)^3 = 22.74 \times 10^6 / 6.873 = 3.3 \times 10^6 \) or \(d_c = 149 \text{ mm} \)
Since this value of crankpin diameter \((i.e. \ d_c = 149 \text{ mm})\) is less than the already calculated value of \(d_c = 205 \text{ mm}\), therefore, we shall take \(d_c = 205 \text{ mm}\). \textbf{Ans.}

\(b)\) Design of shaft under the flywheel
Let \(d_s\) = Diameter of the shaft in mm.
The resulting bending moment on the shaft will be same as calculated earlier, \(i.e.\)
\[M_s = 10.08 \times 10^6 \text{ N-mm} \]
and twisting moment on the shaft,
\[T_s = F_t \times r = 84 \times 300 = 25200 \text{ kN-mm} = 25.2 \times 10^6 \text{ N-mm} \]
∴ Equivalent twisting moment on shaft,
\[T_e = \sqrt{(M_s)^2 + (T_s)^2} = \sqrt{(10.08 \times 10^6)^2 + (25.2 \times 10^6)^2} = 27.14 \times 10^6 \text{ N-mm} \]
We know that equivalent twisting moment \((T_e)\),
\[27.14 \times 10^6 = \frac{\pi}{16} (d_s)^3 \tau = \frac{\pi}{16} (d_s)^3 35 = 6.873 (d_s)^3 \]
∴ \(\tau = 27.14 \times 10^6 / 483 156 = 56.17 \text{ N/mm}^2 \)
From above, we see that by taking the already calculated value of \(d_s = 135 \text{ mm}\), the induced shear stress is more than the allowable shear stress of 31 to 42 MPa. Hence, the value of \(d_s\) is calculated by taking \(\tau = 35 \text{ MPa or N/mm}^2\) in the above equation, \(i.e.\)
\[27.14 \times 10^6 = \frac{\pi}{16} (d_s)^3 35 = 6.873 (d_s)^3 \]
∴ \((d_s)^3 = 27.14 \times 10^6 / 6.873 = 3.95 \times 10^6 \) or \(d_s = 158\) say 160 mm \textbf{Ans.}

\(c)\) Design of shaft at the juncture of right hand crank arm
Let \(d_{s1}\) = Diameter of the shaft at the juncture of the right hand crank arm.
We know that the resultant force at the bearing 1,
\[R_1 = \sqrt{(H_{T1})^2 + (H_{R1})^2} = \sqrt{(42)^2 + (47.3)^2} = 63.3 \text{ kN} \]
∴ Bending moment at the juncture of the right hand crank arm,
\[M_{S1} = R_1 \left(b_2 + \frac{l_2}{2} + \frac{t}{2} \right) - F_Q \left(\frac{l_2}{2} + \frac{t}{2} \right) \]
and twisting moment at the juncture of the right hand crank arm,
\[T_{S1} = F_T \times r = 84 \times 300 = 25200 \text{ kN-mm} = 25.2 \times 10^6 \text{ N-mm} \]
\[\therefore \text{Equivalent twisting moment at the juncture of the right hand crank arm,} \]
\[T_e = \sqrt{(M_{S1})^2 + (T_{S1})^2} \]
\[= \sqrt{(16 \times 10^6)^2 + (25.2 \times 10^6)^2} = 29.85 \times 10^6 \text{ N-mm} \]

We know that equivalent twisting moment \((T_e) \),
\[29.85 \times 10^6 = \frac{\pi}{16} (d_{s1})^3 \tau = \frac{\pi}{16} (d_{s1})^3 42 = 8.25 (d_{s1})^3 \]
\[\text{...(Taking } \tau = 42 \text{ MPa or N/mm}^2) \]
\[\therefore \text{Ans.} \]

\((d_{s1})^3 = 29.85 \times 10^6 / 8.25 = 3.62 \times 10^6 \text{ or } d_{s1} = 153.5 \text{ say 155 mm } \]

\(\text{(d) Design of right hand crank web} \)

Let \(\sigma_{bR} = \text{Bending stress in the radial direction} ; \text{ and} \)
\(\sigma_{bT} = \text{Bending stress in the tangential direction.} \)

We also know that bending moment due to the radial component of \(F_Q \),
\[M_R = H_2 \left(\frac{l}{2} - \frac{t}{2} \right) = 47.3 \left(400 - \frac{155}{2} - \frac{140}{2} \right) \text{ kN-mm} \]
\[= 11.94 \times 10^6 \text{ kN-mm} = 11.94 \times 10^6 \text{ N-mm} \]
\[\text{...(i)} \]

We also know that bending moment,
\[M_R = \sigma_{bR} \times Z = \sigma_{bR} \times \frac{1}{6} \times t \cdot w^2 \]
\[11.94 \times 10^6 = \sigma_{bR} \times \frac{1}{6} \times 245(140)^2 = 800 \times 10^3 \sigma_{bR} \]
\[\therefore \sigma_{bR} = 11.94 \times 10^6 / 800 \times 10^3 = 14.9 \text{ N/mm}^2 \text{ or MPa} \]

We know that bending moment due to the tangential component of \(F_Q \),
\[M_T = F_T \left(r - \frac{d_{s1}}{2} \right) = 84 \left(300 - \frac{155}{2} \right) = 18690 \text{ kN-mm} \]
\[= 18.69 \times 10^6 \text{ N-mm} \]

We also know that bending moment,
\[M_T = \sigma_{bT} \times Z = \sigma_{bT} \times \frac{1}{6} \times t \cdot w^2 \]
\[18.69 \times 10^6 = \sigma_{bT} \times \frac{1}{6} \times 140(245)^2 = 1.4 \times 10^6 \sigma_{bT} \]
\[\therefore \sigma_{bT} = 18.69 \times 10^6 / 1.4 \times 10^6 = 13.35 \text{ N/mm}^2 \text{ or MPa} \]

Direct compressive stress,
\[\sigma_b = \frac{F_R}{2w \cdot t} = \frac{94.6}{2 \times 245 \times 140} = 1.38 \times 10^{-3} \text{ kN/mm}^2 = 1.38 \text{ N/mm}^2 \]
and total compressive stress,
\[\sigma_c = \sigma_{bR} + \sigma_{bT} + \sigma_d = 14.9 + 13.35 + 1.38 = 29.63 \text{ N/mm}^2 \text{ or MPa} \]

We know that twisting moment on the arm,
\[T = H_T \left(b_1 - \frac{l_2}{2} \right) = 42 \left(400 - \frac{155}{2} \right) = 13\,545 \text{ kN-mm} \]
\[= 13.545 \times 10^6 \text{ N-mm} \]

and shear stress on the arm,
\[\tau = \frac{T}{Z_p} = \frac{4.5T}{wT^2} = \frac{4.5 \times 13.545 \times 10^6}{245 \times (140)^2} = 12.7 \text{ N/mm}^2 \text{ or MPa} \]

We know that total or maximum combined stress,
\[(\sigma_c)_{\text{max}} = \frac{\sigma_c}{2} + \frac{1}{2} \sqrt{\left(\sigma_c\right)^2 + 4\tau^2} \]
\[= \frac{29.63}{2} + \frac{1}{2} \sqrt{(29.63)^2 + 4(12.7)^2} = 14.815 + 19.5 = 34.315 \text{ MPa} \]

Since the maximum combined stress is within the safe limits, therefore, the dimension \(w = 245 \text{ mm} \) is accepted.

(e) Design of left hand crank web
The dimensions for the left hand crank web may be made same as for right hand crank web.

(f) Design of crankshaft bearings
Since the bearing 2 is the most heavily loaded, therefore, only this bearing should be checked for bearing pressure.

We know that the total reaction at bearing 2,
\[R_2 = \frac{F_p}{2} + \frac{W}{2} + \frac{T_1 + T_2}{2} = \frac{314.2}{2} + \frac{50}{2} + \frac{6.5}{2} = 185.35 \text{ kN} = 185\,350 \text{ N} \]
\[\therefore \text{ Total bearing pressure} \]
Since this bearing pressure is less than the safe limit of 5 to 8 N/mm², therefore, the design is safe.

Example 32.5. Design a side or overhung crankshaft for a 250 mm × 300 mm gas engine. The weight of the flywheel is 30 kN and the explosion pressure is 2.1 N/mm². The gas pressure at the maximum torque is 0.9 N/mm², when the crank angle is 35° from I.D.C. The connecting rod is 4.5 times the crank radius.

Solution. Given : \(D = 250 \text{ mm} ; L = 300 \text{ mm} \) or \(r = L / 2 = 300 / 2 = 150 \text{ mm} \); \(W = 30 \text{ kN} \) \(= 30 \times 10^3 \text{ N} \); \(p = 2.1 \text{ N/mm}^2 \); \(p' = 0.9 \text{ N/mm}^2 \); \(l = 4.5 \text{ r or } l / r = 4.5 \)

We shall design the crankshaft for the two positions of the crank, i.e. firstly when the crank is at the dead centre and secondly when the crank is at an angle of maximum twisting moment.

1. Design of crankshaft when the crank is at the dead centre (See Fig. 32.18)

We know that piston gas load,

\[
F_p = \frac{\pi}{4} \times D^2 \times p
\]

\[
= \frac{\pi}{4} (250)^2 \times 2.1 \times 10^3 = 103 \times 10^3 \text{ N}
\]

Now the various parts of the crankshaft are designed as discussed below:

(a) Design of crankpin

Let \(d_c = \) Diameter of the crankpin in mm, and

\(l_c = \) Length of the crankpin = \(0.8 \times d_c \) ...(Assume)

Considering the crankpin in bearing, we have

\[
F_p = d_c \times l_c \times p_b
\]

\[
= 103 \times 10^3 \times 0.8 \times d_c \times 10 = 8 \times (d_c)^2 \] ...(Taking \(p_b = 10 \text{ N/mm}^2 \))

\[
(\frac{d_c}{2})^2 = 103 \times 10^3 / 8 = 12,875 \text{ or } d_c = 113.4 \text{ say 115 mm}
\]

and

\[
l_c = 0.8 \times d_c = 0.8 \times 115 = 92 \text{ mm}
\]

Let us now check the induced bending stress in the crankpin.

We know that bending moment at the crankpin,

\[
M = \frac{3}{4} F_p \times l_c = \frac{3}{4} \times 103 \times 10^3 \times 92 = 7107 \times 10^3 \text{ N-mm}
\]

and section modulus of the crankpin,

\[
Z = \frac{\pi}{32} (d_c)^3 = \frac{\pi}{32} (115)^3 = 149 \times 10^3 \text{ mm}^3
\]

.: Bending stress induced

\[
= \frac{M}{Z} = \frac{7107 \times 10^3}{149 \times 10^3} = 47.7 \text{ N/mm}^2 \text{ or MPa}
\]

Since the induced bending stress is within the permissible limits of 60 MPa, therefore, design of crankpin is safe.

Valve guides of an IC engine
(b) **Design of bearings**

Let \(d_1 = \) Diameter of the bearing 1.

Let us take thickness of the crank web, \(t = 0.6 d = 0.6 \times 115 = 69 \) or 70 mm

and length of the bearing, \(l_1 = 1.7 d = 1.7 \times 115 = 195.5 \) say 200 mm

We know that bending moment at the centre of the bearing 1,

\[
M = F_P \left(0.75 l_c + t + 0.5 l_1 \right) = 103 \times 10^3 \left(0.75 \times 92 + 70 + 0.5 \times 200 \right) = 24.6 \times 10^6 \text{ N-mm}
\]

We also know that bending moment \(M \),

\[
24.6 \times 10^6 = \frac{\pi}{32} (d_1)^3 \sigma_b = \frac{\pi}{32} (d_1)^3 60 = 5.9 (d_1)^3
\]

\[\text{...(Taking } \sigma_b = 60 \text{ MPa or N/mm}^2)\]

\[
(d_1)^3 = 24.6 \times 10^6 / 5.9 = 4.2 \times 10^6 \text{ or } d_1 = 161.3 \text{ mm say 162 mm Ans.}
\]

(c) **Design of crank web**

Let \(W = \) Width of the crank web in mm.

We know that bending moment on the crank web,

\[
M = F_P \left(0.75 l_c + 0.5 t \right) = 103 \times 10^3 \left(0.75 \times 92 + 0.5 \times 70 \right) = 10.7 \times 10^6 \text{ N-mm}
\]

and section modulus,

\[
Z = \frac{1}{6} x w \cdot t^2 = \frac{1}{6} \times w (70)^2 = 817 \ w \text{ mm}^3
\]

\[
\therefore \text{ Bending stress, } \sigma_b = \frac{M}{Z} = \frac{10.7 \times 10^6}{817w} = 13 \times 10^3 \text{ N/mm}^2
\]

and direct compressive stress,

\[
\sigma_d = \frac{F_P}{w \cdot l} = \frac{103 \times 10^3}{w \times 70} = \frac{1.7 \times 10^3}{w} \text{ N/mm}^2
\]

We know that total stress on the crank web,

\[
\sigma_T = \sigma_b + \sigma_d = \frac{13 \times 10^3}{w} + \frac{1.7 \times 10^3}{w} = 14.47 \times 10^3 \text{ N/mm}^2
\]

The total stress should not exceed the permissible limit of 60 MPa or N/mm².

\[
\therefore 60 = \frac{14.47 \times 10^3}{w} \text{ or } w = \frac{14.47 \times 10^3}{60} = 241 \text{ say 245 mm Ans.}
\]

(d) **Design of shaft under the flywheel.**

Let \(d_s = \) Diameter of shaft under the flywheel.

First of all, let us find the horizontal and vertical reactions at bearings 1 and 2. Assume that the width of flywheel is 250 mm and \(l_1 = l_2 = 200 \) mm.

Allowing for certain clearance, the distance

\[
b = 250 + \frac{l_1}{2} + \frac{l_2}{2} + \text{clearance} = 250 + \frac{200}{2} + \frac{200}{2} + 20 = 470 \text{ mm}
\]

and

\[
a = 0.75 l_c + t + 0.5 l_1 = 0.75 \times 92 + 70 + 0.5 \times 200 = 239 \text{ mm}
\]

We know that the horizontal reactions \(H_1 \) and \(H_2 \) at bearings 1 and 2, due to the piston gas load \((F_P) \) are
\[H_1 = \frac{F_p (a + b)}{b} = \frac{103 \times 10^3 (239 + 470)}{470} = 155.4 \times 10^3 \text{ N} \]

and

\[H_2 = \frac{F_p \times a}{b} = \frac{103 \times 10^3 \times 239}{470} = 52.4 \times 10^3 \text{ N} \]

Assuming \(b_1 = b_2 = b/2 \), the vertical reactions \(V_1 \) and \(V_2 \) at bearings 1 and 2 due to the weight of the flywheel are

\[V_1 = \frac{W \cdot b_1}{b} = \frac{W \times b/2}{b} = \frac{W}{2} = \frac{30 \times 10^3}{2} = 15 \times 10^3 \text{ N} \]

and

\[V_2 = \frac{W \cdot b_2}{b} = \frac{W \times b/2}{b} = \frac{W}{2} = \frac{30 \times 10^3}{2} = 15 \times 10^3 \text{ N} \]

Since there is no belt tension, therefore the horizontal reactions due to the belt tension are neglected.

We know that horizontal bending moment at the flywheel location due to piston gas load.

\[M_1 = F_p (a + b) - H_1 \cdot b_2 \]

\[= 103 \times 10^3 \left(\frac{239 + 470}{2} \right) - 155.4 \times 10^3 \times \frac{470}{2} \]

\[= 48.8 \times 10^6 - 36.5 \times 10^6 = 12.3 \times 10^6 \text{ N-mm} \]

Since there is no belt pull, therefore, there will be no horizontal bending moment due to the belt pull, \(i.e. M_2 = 0 \).

\[\therefore \text{Total horizontal bending moment,} \]

\[M_H = M_1 + M_2 = 12.3 \times 10^6 \text{ N-mm} \]

We know that vertical bending moment due to the flywheel weight,

\[M_V = \frac{W \cdot b_1 \cdot b_2}{b} = \frac{W \times b \times b}{2 \times 2 \times b} = \frac{W \times b}{4} \]

\[= \frac{30 \times 10^3 \times 470}{4} = 3.525 \times 10^6 \text{ N-mm} \]
Resultant bending moment,

\[M_R = \sqrt{(M_{hl})^2 + (M_{vl})^2} = \sqrt{(12.3 \times 10^6)^2 + (3.525 \times 10^6)^2} \]

= 12.8 \times 10^6 \text{ N-mm}

We know that bending moment \((M_R)\),

\[12.8 \times 10^6 = \frac{\pi}{32}(d_s)^3 \sigma_b = \frac{\pi}{32}(d_s)^3 60 = 5.9(d_s)^3 \]

\[\therefore \ (d_s)^3 = 12.8 \times 10^6 / 5.9 = 2.17 \times 10^6 \text{ or } d_s = 129 \text{ mm} \]

Actually \(d_s\) should be more than \(d_l\). Therefore let us take

\[d_s = 200 \text{ mm Ans.} \]

2. Design of crankshaft when the crank is at an angle of maximum twisting moment

We know that piston gas load,

\[F_P = \frac{\pi}{4} \times D^2 \times p' = \frac{\pi}{4}(250)^2 \times 0.9 = 44 \times 200 \text{ N} \]

In order to find the thrust in the connecting rod \((F_Q)\), we should first find out the angle of inclination of the connecting rod with the line of stroke (i.e. angle \(\phi\)). We know that

\[\sin \phi = \frac{\sin \theta}{L/r} = \frac{\sin 35^\circ}{4.5} = 0.1275 \]

\[\therefore \ \phi = \sin^{-1} (0.1275) = 7.32^\circ \]

We know that thrust in the connecting rod,

\[F_Q = \frac{F_P}{\cos \phi} = \frac{44 \times 200}{\cos 7.32^\circ} = 44 \times 200 / 0.9918 = 44 \times 565 \text{ N} \]

Tangential force acting on the crankshaft,

\[F_T = F_Q \sin (\theta + \phi) = 44 \times 565 \sin (35^\circ + 7.32^\circ) = 30 \times 10^3 \text{ N} \]

and radial force,

\[F_R = F_Q \cos (\theta + \phi) = 44 \times 565 \cos (35^\circ + 7.32^\circ) = 33 \times 10^3 \text{ N} \]

Due to the tangential force \((F_T)\) there will be two reactions at the bearings 1 and 2, such that

\[H_{T1} = \frac{F_T(a + b)}{b} = \frac{30 \times 10^3 \times (239 + 470)}{470} = 45 \times 10^3 \text{ N} \]

and

\[H_{T2} = \frac{F_T \times a}{b} = \frac{30 \times 10^3 \times 239}{470} = 15.3 \times 10^3 \text{ N} \]

Due to the radial force \((F_R)\), there will be two reactions at the bearings 1 and 2, such that

\[H_{R1} = \frac{F_R(a + b)}{b} = \frac{33 \times 10^3 \times (239 + 470)}{470} = 49.8 \times 10^3 \text{ N} \]

and

\[H_{R2} = \frac{F_R \times a}{b} = \frac{33 \times 10^3 \times 239}{470} = 16.8 \times 10^3 \text{ N} \]

Now the various parts of the crankshaft are designed as discussed below:

(a) Design of crank web

We know that bending moment due to the tangential force,

\[M_{bt} = F_T \left(r - \frac{d_s}{2} \right) = 30 \times 10^3 \left\{ 150 - \frac{180}{2} \right\} = 1.8 \times 10^6 \text{ N-mm} \]
Bending stress due to the tangential force,
\[
\sigma_{bt} = \frac{M_{bt}}{Z} = \frac{6M_{bt}}{t \cdot w^2} = \frac{6 \times 1.8 \times 10^6}{70 (245)^2} \quad \ldots \quad (\because Z = \frac{1}{6} \times t \cdot w^2)
\]
\[
= 2.6 \text{ N/mm}^2 \text{ or MPa}
\]

Bending moment due to the radial force,
\[
M_{br} = F_r (0.75 l_c + 0.5 t)
\]
\[
= 33 \times 10^3 \times (0.75 \times 92 + 0.5 \times 70) = 3.43 \times 10^6 \text{ N-mm}
\]

Bending stress due to the radial force,
\[
\sigma_{br} = \frac{M_{br}}{Z} = \frac{6M_{br}}{w t^2} \quad \ldots \quad (\because Z = \frac{1}{6} \times w t^2)
\]
\[
= \frac{6 \times 3.43 \times 10^6}{245 (70)^2} = 17.1 \text{ N/mm}^2 \text{ or MPa}
\]
We know that direct compressive stress,

\[\sigma_d = \frac{F_R}{w \cdot l} = \frac{33 \times 10^3}{245 \times 70} = 1.9 \text{ N/mm}^2 \text{ or MPa} \]

\[\therefore \text{Total compressive stress,} \]

\[\sigma_c = \sigma_b T + \sigma_b R + \sigma_d = 2.6 + 17.1 + 1.9 = 21.6 \text{ MPa} \]

We know that twisting moment due to the tangential force,

\[T = F_T \left(0.75 l_c + 0.5 t \right) = 30 \times 10^3 \left(0.75 \times 92 + 0.5 \times 70 \right) = 3.12 \times 10^6 \text{ N-mm} \]

\[\therefore \text{Shear stress,} \]

\[\tau = \frac{T}{Z_p} = \frac{4.5 T}{w \cdot l^2} = \frac{4.5 \times 3.12 \times 10^6}{245 \left(70\right)^2} \]

\[= 11.7 \text{ N/mm}^2 \text{ or MPa} \]

We know that total or maximum stress,

\[\sigma_{\text{max}} = \frac{\sigma_c}{2} + \frac{1}{2} \sqrt{(\sigma_c)^2 + 4 \tau^2} = \frac{21.6}{2} + \frac{1}{2} \sqrt{(21.6)^2 + 4(11.7)^2} \]

\[= 10.8 + 15.9 = 26.7 \text{ MPa} \]

Since this stress is less than the permissible value of 60 MPa, therefore, the design is safe.

b) Design of shaft at the junction of crank

Let \(d_{s1} \) = Diameter of shaft at the junction of crank.

We know that bending moment at the junction of crank,

\[M = F_Q \left(0.75 l_c + t \right) = 44 \times 565 \left(0.75 \times 92 + 70 \right) = 6.2 \times 10^6 \text{ N-mm} \]

and twisting moment,

\[T = F_T \times r = 30 \times 10^3 \times 150 = 4.5 \times 10^6 \text{ N-mm} \]

\[\therefore \text{Equivalent twisting moment,} \]

\[T_e = \sqrt{M^2 + T^2} = \sqrt{(6.2 \times 10^6)^2 + (4.5 \times 10^6)^2} = 7.66 \times 10^6 \text{ N-mm} \]

We also know that equivalent twisting moment \((T_e) \),

\[7.66 \times 10^6 = \frac{\pi}{16} \left(d_{s1}\right)^3 \tau = \frac{\pi}{16} \left(180\right)^3 \tau = 1.14 \times 10^6 \tau \]

\[\therefore \tau = 7.66 \times 10^6 / 1.14 \times 10^6 = 6.72 \text{ N/mm}^2 \text{ or MPa} \]

Since the induced shear stress is less than the permissible limit of 30 to 40 MPa, therefore, the design is safe.

c) Design of shaft under the flywheel

Let \(d_{s2} \) = Diameter of shaft under the flywheel.

We know that horizontal bending moment acting on the shaft due to piston gas load,

\[M_H = F_p \left(a + b_2 \right) - \left[\sqrt{(H_{R1})^2 + (H_{T1})^2} \right] b_2 \]

\[= 44 \times 200 \left(239 + \frac{470}{2} \right) - \left[\sqrt{(49.8 \times 10^3)^2 + (45 \times 10^3)^2} \right] \frac{470}{2} \]

\[= 20.95 \times 10^6 - 15.77 \times 10^6 = 5.18 \times 10^6 \text{ N-mm} \]

and bending moment due to the flywheel weight.
\[M_V = \frac{W b_1 b_2}{b} = \frac{30 \times 10^3 \times 235 \times 235}{470} = 3.53 \times 10^6 \text{ N-mm} \]

\[(b_1 = b_2 = b / 2 = 470 / 2 = 235 \text{ mm}) \]

\[M_R = \sqrt{(M_H)^2 + (M_V)^2} = \sqrt{(5.18 \times 10^6)^2 + (3.53 \times 10^6)^2} = 6.27 \times 10^6 \text{ N-mm} \]

We know that twisting moment on the shaft,

\[T = F \pi r = 30 \times 10^3 \times 150 = 45 \times 10^6 \text{ N-mm} \]

\[T_e = \sqrt{(M_H)^2 + T^2} = \sqrt{(6.27 \times 10^6)^2 + (4.5 \times 10^6)^2} = 7.72 \times 10^6 \text{ N-mm} \]

We also know that equivalent twisting moment \((T_e)_e\),

\[7.72 \times 10^6 = \frac{\pi}{16} (d_f)^3 \tau = \frac{\pi}{16} (d_f)^3 30 = 5.9 (d_f)^3 \]

\[...(\text{Taking } \tau = 30 \text{ MPa}) \]

\[(d_f)^3 = 7.72 \times 10^6 / 5.9 = 1.31 \times 10^6 \text{ or } d_f = 109 \text{ mm} \]

Actually, \(d_f\) should be more than \(d_i\). Therefore let us take \(d_f = 200 \text{ mm} \text{ Ans.} \]

32.22 Valve Gear Mechanism

The valve gear mechanism of an I.C. engine consists of those parts which actuate the inlet and exhaust valves at the required time with respect to the position of piston and crankshaft. Fig. 32.20 (a) shows the valve gear arrangement for vertical engines. The main components of the mechanism are valves, rocker arm, * valve springs, ** push rod, *** cam and camshaft.

* For the design of springs, refer Chapter 23.
** For the design of push rod, refer Chapter 16 (Art. 16.14).
*** For the design of cams, refer to Authors' popular book on ‘Theory of Machines’.

![Fig. 32.20. Valve gear mechanism.](image-url)
The fuel is admitted to the engine by the inlet valve and the burnt gases are escaped through the exhaust valve. In vertical engines, the cam moving on the rotating camshaft pushes the cam follower and push rod upwards, thereby transmitting the cam action to rocker arm. The camshaft is rotated by the toothed belt from the crankshaft. The rocker arm is pivoted at its centre by a fulcrum pin. When one end of the rocker arm is pushed up by the push rod, the other end moves downward. This pushes down the valve stem causing the valve to move down, thereby opening the port. When the cam follower moves over the circular portion of cam, the pushing action of the rocker arm on the valve is released and the valve returns to its seat and closes it by the action of the valve spring.

In some of the modern engines, the camshaft is located at cylinder head level. In such cases, the push rod is eliminated and the roller type cam follower is made part of the rocker arm. Such an arrangement for the horizontal engines is shown in Fig. 32.20 (b).

32.23 Valves

The valves used in internal combustion engines are of the following three types:

1. Poppet or mushroom valve;
2. Sleeve valve;
3. Rotary valve.

Out of these three valves, poppet valve, as shown in Fig. 32.21, is very frequently used. It consists of head, face and stem. The head and face of the valve are separated by a small margin, to avoid sharp edge of the valve and also to provide provision for the regrinding of the face. The face angle generally varies from 30° to 45°. The lower part of the stem is provided with a groove in which spring retainer lock is installed.

Since both the inlet and exhaust valves are subjected to high temperatures of 1930°C to 2200°C during the power stroke, therefore, it is necessary that the material of the valves should withstand these temperatures. Thus the material of the valves must have good heat conduction, heat resistance, corrosion resistance, wear resistance and shock resistance. It may be noted that the temperature at the inlet valve is less as compared to exhaust valve. Thus, the inlet valve is generally made of nickel chromium alloy steel and the exhaust valve (which is subjected to very high temperature of exhaust gases) is made from silchrome steel which is a special alloy of silicon and chromium.

In designing a valve, it is required to determine the following dimensions:

(a) **Size of the valve port**

Let

\[
\begin{align*}
q_p &= \text{Area of the port}, \\
q_p &= \text{Mean velocity of gas flowing through the port}, \\
q &= \text{Area of the piston}, \text{ and} \\
q &= \text{Mean velocity of the piston}.
\end{align*}
\]

We know that

\[
q_p q_p = q q
\]

\[
\therefore q_p = \frac{q q}{q_p}
\]
The mean velocity of the gas \((v_p) \) may be taken from the following table.

<table>
<thead>
<tr>
<th>Type of engine</th>
<th>Mean velocity of the gas ((v_p)) m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inlet valve</td>
</tr>
<tr>
<td>Low speed</td>
<td>33 – 40</td>
</tr>
<tr>
<td>High speed</td>
<td>80 – 90</td>
</tr>
</tbody>
</table>

Sometimes, inlet port is made 20 to 40 percent larger than exhaust port for better cylinder charging.

(b) Thickness of the valve disc

The thickness of the valve disc \((t)\), as shown in Fig. 32.22, may be determined empirically from the following relation, i.e.

\[
t = k \cdot d_p \cdot \sqrt{\frac{p}{\sigma_b}}
\]

where
- \(k\) = Constant = 0.42 for steel and 0.54 for cast iron,
- \(d_p\) = Diameter of the port in \(\text{mm}\),
- \(p\) = Maximum gas pressure in \(\text{N/mm}^2\), and
- \(\sigma_b\) = Permissible bending stress in \(\text{MPa or N/mm}^2\) = 50 to 60 MPa for carbon steel and 100 to 120 MPa for alloy steel.

(c) Maximum lift of the valve

\(h = \text{Lift of the valve.}\)

The lift of the valve may be obtained by equating the area across the valve seat to the area of the port. For a conical valve, as shown in Fig. 32.22, we have

\[
\pi d_p \cdot h \cos \alpha = \frac{\pi}{4} (d_p)^2 \quad \text{or} \quad h = \frac{d_p}{4 \cos \alpha}
\]

where
- \(\alpha\) = Angle at which the valve seat is tapered = 30° to 45°.
In case of flat headed valve, the lift of valve is given by

\[h = \frac{d_p}{4} \quad \text{...(In this case, } \alpha = 0^\circ) \]

The valve seats usually have the same angle as the valve seating surface. But it is preferable to make the angle of valve seat 1/2° to 1° larger than the valve angle as shown in Fig. 32.23. This results in more effective seat.

(d) Valve stem diameter

The valve stem diameter \((d_s)\) is given by

\[d_s = \frac{d_p}{8} + 6.35 \text{ mm to } \frac{d_p}{8} + 11 \text{ mm} \]

Note: The valve is subjected to spring force which is taken as concentrated load at the centre. Due to this spring force \((F_s)\), the stress in the valve \((\sigma_p)\) is given by

\[\sigma_p = \frac{1.4 F_s}{t^2} \left(1 - \frac{2d_s}{3d_p} \right) \]

Example 32.6. The conical valve of an I.C. engine is 60 mm in diameter and is subjected to a maximum gas pressure of 4 N/mm². The safe stress in bending for the valve material is 46 MPa. The valve is made of steel for which \(k = 0.42\). The angle at which the valve disc seat is tapered is 30°.

Determine: 1. thickness of the valve head; 2. stem diameter; and 3. maximum lift of the valve.

Solution. Given: \(d_p = 60 \text{ mm} ; p = 4 \text{ N/mm}^2 ; \sigma_b = 46 \text{ MPa} = 46 \text{ N/mm}^2 ; k = 0.42 ; \alpha = 30^\circ\)

1. **Thickness of the valve head**

 We know that thickness of the valve head,

 \[t = k \cdot d_p \sqrt{\frac{p}{\sigma_b}} = 0.42 \times 60 \sqrt{\frac{4}{46}} = 7.43 \text{ say } 7.5 \text{ mm Ans.} \]

2. **Stem diameter**

 We know that stem diameter,

 \[d_s = \frac{d_p}{8} + 6.35 = \frac{60}{8} + 6.35 = 13.85 \text{ say } 14 \text{ mm Ans.} \]

 We know that maximum lift of the valve,

 \[h = \frac{d_p}{4 \cos \alpha} = \frac{60}{4 \cos 30^\circ} = \frac{60}{4 \times 0.866} = 17.32 \text{ say } 17.4 \text{ mm Ans.} \]

32.24 Rocker Arm

The * rocker arm is used to actuate the inlet and exhaust valves motion as directed by the cam and follower. It may be made of cast iron, cast steel, or malleable iron. In order to reduce inertia of the rocker arm, an I-section is used for the high speed engines and it may be rectangular section for low speed engines. In four stroke engines, the rocker arms for the exhaust valve is the most heavily loaded. Though the force required to operate the inlet valve is relatively small, yet it is usual practice to make the rocker

* The rocker arm has also been discussed in Chapter 15 on Levers (Refer Art. 15.9).
arm for the inlet valve of the same dimensions as that for exhaust valve. A typical rocker arm for operating the exhaust valve is shown in Fig. 32.24. The lever ratio \(a / b \) is generally decided by considering the space available for rocker arm. For moderate and low speed engines, \(a / b \) is equal to one. For high speed engines, the ratio \(a / b \) is taken as \(1 / 1.3 \). The various force acting on the rocker arm of exhaust valve are the gas load, spring force and force due to valve acceleration.

Let
\[
\begin{align*}
 m_v &= \text{Mass of the valve}, \\
 d_v &= \text{Diameter of the valve head}, \\
 h &= \text{Lift of the valve}, \\
 a &= \text{Acceleration of the valve}, \\
 p_c &= \text{Cylinder pressure or back pressure when the exhaust valve opens}, \text{and } \\
 p_s &= \text{Maximum suction pressure}.
\end{align*}
\]

We know that gas load,
\[
 P = \text{Area of valve} \times \text{Cylinder pressure when the exhaust valve opens} \\
 = \frac{\pi}{4} (d_v)^2 p_c
\]

Spring force,
\[
 F_s = \text{Area of valve} \times \text{Maximum suction pressure} \\
 = \frac{\pi}{4} (d_v)^2 p_s
\]

and force due to valve acceleration,
\[
 F_{va} = \text{Mass of valve} \times \text{Acceleration of valve} \\
 = m_v \times a
\]

\[
\therefore \text{Maximum load on the rocker arm for exhaust valve,} \\
F_e = P + F_s + F_{va}
\]

It may be noted that maximum load on the rocker arm for inlet valve is

\[
F_i = F_s + F_{va}
\]

Since the maximum load on the rocker arm for exhaust valve is more than that of inlet valve, therefore, the rocker arm must be designed on the basis of maximum load on the rocker arm for exhaust valve, as discussed below:

1. **Design for fulcrum pin.** The load acting on the fulcrum pin is the total reaction \((R_p)\) at the fulcrum point.
Let \(d_1 \) = Diameter of the fulcrum pin, and
\(l_1 \) = Length of the fulcrum pin.

Considering the bearing of the fulcrum pin. We know that load on the fulcrum pin,
\[R_F = d_1 \cdot l_1 \cdot p_b \]
The ratio of \(l_1 / d_1 \) is taken as 1.25 and the bearing pressure \((p_b) \) for ordinary lubrication is taken from 3.5 to 6 N/mm\(^2\) and it may go upto 10.5 N/mm\(^2\) for forced lubrication.

The pin should be checked for the induced shear stress.

The thickness of the phosphor bronze bush may be taken from 2 to 4 mm. The outside diameter of the boss at the fulcrum is usually taken twice the diameter of the fulcrum pin.

2. Design for forked end. The forked end of the rocker arm carries a roller by means of a pin. For uniform wear, the roller should revolve in the eyes. The load acting on the roller pin is \(F_c \).

Let \(d_2 \) = Diameter of the roller pin, and
\(l_2 \) = Length of the roller pin.

Considering the bearing of the roller pin. We know that load on the roller pin,
\[F_c = d_2 \cdot l_2 \cdot p_b \]
The ratio of \(l_2 / d_2 \) may be taken as 1.25. The roller pin should be checked for induced shear stesss.

The roller pin is fixed in eye and the thickness of each eye is taken as half the length of the roller pin.

\[\therefore \text{Thickness of each eye} = l_2 / 2 \]

The radial thickness of eye \((t_3) \) is taken as \(d_1 / 2 \). Therefore overall diameter of the eye,
\[D_1 = 2 \cdot d_1 \]

The outer diameter of the roller is taken slightly larger (atleast 3 mm more) than the outer diameter of the eye.

A clearance of 1.5 mm between the roller and the fork on either side of the roller is provided.

3. Design for rocker arm cross-section. The rocker arm may be treated as a simply supported beam and loaded at the fulcrum point. We have already discussed that the rocker arm is generally of \(I \)-section but for low speed engines, it can be of rectangular section. Due to the load on the valve, the rocker arm is subjected to bending moment.

Let \(l \) = Effective length of each rocker arm, and
\(\sigma_b \) = Permissible bending stress.

We know that bending moment on the rocker arm,
\[M = F_e \times l \] ...
\[(i) \]

We also know that bending moment,
\[M = \sigma_b \times Z \] ...
\[(ii) \]

where \(Z = \) Section modulus.

From equations \((i) \) and \((ii) \), the value of \(Z \) is obtained and thus the dimensions of the section are determined.

4. Design for tappet. The tappet end of the rocker arm is made circular to receive the tappet which is a stud with a lock nut. The compressive load acting on the tappet is the maximum load on the rocker arm for the exhaust valve \((F_e) \).

Let \(d_c \) = Core diameter of the tappet, and
\(\sigma_c \) = Permissible compressive stress for the material of the tappet which is made of mild steel. It may be taken as 50 MPa.

We know that load on the tappet,
\[F_c = \frac{\pi}{4} (d_c)^2 \sigma_c \]

From this expression, the core diameter of the tappet is determined. The outer or nominal diameter of the tappet \((d_n) \) is given as
The diameter of the circular end of the rocker arm \(D_3\) and its depth \(t_4\) is taken as twice the nominal diameter of the tappet \(d_n\), i.e.
\[D_3 = 2d_n; \quad \text{and} \quad t_4 = 2d_n \]

5. Design for valve spring. The valve spring is used to provide sufficient force during the valve lifting process in order to overcome the inertia of valve gear and to keep it with the cam without bouncing. The spring is generally made from plain carbon spring steel. The total load for which the spring is designed is equal to the sum of initial load and load at full lift.

Let
\[W_1 = \text{Initial load on the spring} = \text{Force on the valve tending to draw it into the cylinder on suction stroke}, \]
\[W_2 = \text{Load at full lift} = \text{Full lift} \times \text{Stiffness of spring} \]
\[\therefore \text{Total load on the spring,} \]
\[W = W_1 + W_2 \]

Note: Here we are only interested in calculating the total load on the spring. The design of the valve spring is done in the similar ways as discussed for compression springs in Chapter 23 on Springs.

Example 32.7. Design a rocker arm, and its bearings, tappet, roller and valve spring for the exhaust valve of a four stroke I.C. engine from the following data:

- Diameter of the valve head = 80 mm; Lift of the valve = 25 mm; Mass of associated parts with the valve = 0.4 kg; Angle of action of camshaft = 110°; R. P. M. of the crankshaft = 1500.
- From the probable indicator diagram, it has been observed that the greatest back pressure when the exhaust valve opens is 0.4 N/mm² and the greatest suction pressure is 0.02 N/mm² below atmosphere.

The rocker arm is to be of I-section and the effective length of each arm may be taken as 180 mm; the angle between the two arms being 135°.

The motion of the valve may be assumed S.H.M., without dwell in fully open position.

Choose your own materials and suitable values for the stresses.

Draw fully dimensioned sketches of the valve gear.

Solution. Given:
- \(d_v = 80 \text{ mm}\);
- \(h = 25 \text{ mm}\);
- \(r = 25 / 2 = 12.5 \text{ mm} = 0.0125 \text{ m}\);
- \(m = 0.4 \text{ kg}\);
- \(\alpha = 110°\text{mm}\);
- \(N = 1500 \text{ r.p.m.}\);
- \(p_c = 0.4 \text{ N/mm}^2\);
- \(p_s = 0.02 \text{ N/mm}^2\);
- \(l = 180 \text{ mm}\);
- \(\theta = 135°\)

A rocker arm for operating the exhaust valve is shown in Fig. 32.25.

First of all, let us find the various forces acting on the rocker arm of the exhaust valve.

We know that gas load on the valve,
\[P_1 = \frac{\pi}{4} (d_v)^2 P_c = \frac{\pi}{4} (80)^2 0.4 = 2011 \text{ N} \]

Weight of associated parts with the valve,
\[w = m \cdot g = 0.4 \times 9.8 = 3.92 \text{ N} \]
\[\therefore \text{Total load on the valve,} \]
\[P = P_1 + w = 2011 + 3.92 = 2014.92 \text{ N} \quad \ldots (i) \]

Initial spring force considering weight of the valve,
\[F_s = \frac{\pi}{4} (d_v)^2 p_s - w = \frac{\pi}{4} (80)^2 0.02 - 3.92 = 96.6 \text{ N} \quad \ldots (ii) \]

The force due to valve acceleration \(F_a\) may be obtained as discussed below:

We know that speed of camshaft
and angle turned by the camshaft per second

\[\frac{N}{2} = \frac{1500}{2} = 750 \text{ r.p.m.} \]

\[t = \frac{\text{Angle of action of cam}}{\text{Angle turned by camshaft}} = \frac{110}{4500} = 0.024 \text{ s} \]

We know that maximum acceleration of the valve

\[a = \omega^2 \cdot r = \left(\frac{2\pi}{t} \right)^2 \cdot r = \left(\frac{2\pi}{0.024} \right)^2 \cdot 0.0125 = 857 \text{ m/s}^2 \]

\[\therefore \omega = \frac{2\pi}{t} \]

\[F_a = m \cdot a + w = 0.4 \times 857 + 3.92 = 346.72 \text{ N} \] ...

\[(iii) \]

and maximum load on the rocker arm for exhaust valve,

\[F_e = P + F_s + F_a = 2014.92 + 96.6 + 346.72 = 2458.24 \text{ say } 2460 \text{ N} \]

Since the length of the two arms of the rocker are equal, therefore, the load at the two ends of the arm are equal, \textit{i.e.} \(F_e = F_c = 2460 \text{ N} \).
We know that reaction at the fulcrum pin \(F_F \),

\[
R_F = \sqrt{(F_F)^2 + (F_F)^2 - 2 \times F_F \times F_F \times \cos \theta}
\]

\[
= \sqrt{(2460)^2 + (2460)^2 - 2 \times 2460 \times 2460 \times \cos 135^\circ} = 4545 \text{ N}
\]

Let us now design the various parts of the rocker arm.

1. Design of fulcrum pin

Let

\[
d_1 = \text{Diameter of the fulcrum pin, and}
\]

\[
l_1 = \text{Length of the fulcrum pin} = 1.25 \times d_1 \quad \text{...(Assume)}
\]

Considering the bearing of the fulcrum pin. We know that load on the fulcrum pin \(R_F \),

\[
4545 = d_1 \times l_1 \times p_b = d_1 \times 1.25 \times d_1 \times 5 = 6.25 \times (d_1)^2
\]

...(For ordinary lubrication, \(p_b \) is taken as 5 N/mm²)

\[
\therefore \quad (d_1)^2 = \frac{4545}{6.25} = 727 \text{ or } d_1 = 26.97 \text{ say } 30 \text{ mm Ans.}
\]

and

\[
l_1 = 1.25 \times d_1 = 1.25 \times 30 = 37.5 \text{ mm Ans.}
\]

Now let us check the average shear stress induced in the pin. Since the pin is in double shear, therefore, load on the fulcrum pin \(R_F \).

\[
4545 = 2 \times \frac{\pi}{4} (d_1)^2 \tau = 2 \times \frac{\pi}{4} (30)^2 \tau = 1414 \tau
\]

\[
\therefore \quad \tau = \frac{4545}{1414} = 3.2 \text{ N/mm² or MPa}
\]

This induced shear stress is quite safe.

Now external diameter of the boss,

\[
D_1 = 2d_1 = 2 \times 30 = 60 \text{ mm}
\]

Assuming a phosphor bronze bush of 3 mm thick, the internal diameter of the hole in the lever,

\[
d_h = d_1 + 2 \times 3 = 30 + 6 = 36 \text{ mm}
\]

Let us now check the induced bending stress for the section of the boss at the fulcrum which is shown in Fig. 32.26.
Bending moment at this section,
\[M = F_c \times l = 2460 \times 180 = 443 \times 10^3 \text{ N-mm} \]

Section modulus,
\[Z = \frac{1}{12} \times 37.5 \times \left[(60)^3 - (36)^3 \right] \div 60/2 = 17640 \text{ mm}^3 \]

\[\therefore \text{Induced bending stress,} \]
\[\sigma_b = \frac{M}{Z} = \frac{443 \times 10^3}{17640} = 25.1 \text{ N/mm}^2 \text{ or MPa} \]

The induced bending stress is quite safe.

2. Design for forked end

Let \(d_2 = \) Diameter of the roller pin,
and \(l_2 = \) Length of the roller pin
\[= 1.25 \, d_1 \text{...}(\text{Assume}) \]

Considering bearing of the roller pin. We know that load on the roller pin \((F_c), \)
\[2460 = d_2 \times l_2 \times p_b = d_2 \times 1.25 \, d_2 \times 7 = 8.75 \, (d_2)^2 \]
\[\text{... (Taking } p_b = 7 \text{ N / mm}^2) \]

\[\therefore \, (d_2)^2 = 2460 / 8.75 = 281 \text{ or } d_2 = 16.76 \text{ say 18 mm} \textbf{ Ans.} \]

and \[l_2 = 1.25 \, d_2 = 22.5 \text{ say 24 mm} \textbf{ Ans.} \]

Let us now check the roller pin for induced shearing stress. Since the pin is in double shear, therefore, load on the roller pin \((F_c), \)
\[2460 = 2 \times \frac{\pi}{4} \, (d_2)^2 \tau = 2 \times \frac{\pi}{4} \, (18)^2 \tau = 509 \, \tau \]
\[\therefore \, \tau = 2460 / 509 = 4.83 \text{ N/mm}^2 \text{ or MPa} \]

This induced shear stress is quite safe.
The roller pin is fixed in the eye and thickness of each eye is taken as one-half the length of the roller pin.
\[\therefore \text{Thickness of each eye,} \]
\[t_2 = \frac{l_2}{2} = \frac{24}{2} = 12 \text{ mm} \]

Let us now check the induced bending stress in the roller pin. The pin is neither simply supported in fork nor rigidly fixed at the end. Therefore, the common practice is to assume the load distribution as shown in Fig. 32.27.

The maximum bending moment will occur at \(Y-Y. \)

Neglecting the effect of clearance, we have

\[\text{Maximum bending moment at } Y-Y, \]
\[M = \frac{F_c \left(l_2 \times t_2 + l_2 \times t_2 \right)}{2} - \frac{F_c \times l_2}{4} \times \frac{l_2}{4} \]
\[= \frac{F_c \left(l_2 \times t_2 + l_2 \times t_2 \right)}{2} - \frac{F_c \times l_2}{6} \times \frac{l_2}{4} \]
\[= \frac{5}{24} \times F_c \times l_2 = \frac{5}{24} \times 2460 \times 24 \]
\[= 12300 \text{ N-mm} \]
and section modulus of the pin,
\[Z = \frac{\pi}{32} (d_2)^3 = \frac{\pi}{32} (18)^3 = 573 \text{ mm}^3 \]

\[\therefore \text{ Bending stress induced in the pin} \]
\[= \frac{M}{Z} = \frac{12300}{573} = 21.5 \text{ N/mm}^2 \text{ or MPA} \]

This bending stress induced in the pin is within permissible limits.

Since the radial thickness of eye \(t_3 \) is taken as \(d_2 / 2 \), therefore, overall diameter of the eye,
\[D_2 = 2 \times 18 = 36 \text{ mm} \]

The outer diameter of the roller is taken slightly larger (atleast 3 mm more) than the outer diameter of the eye.

In the present case, 42 mm outer diameter of the roller will be sufficient.

Providing a clearance of 1.5 mm between the roller and the fork on either side of the roller, we have
\[l_3 = l_2 + 2 \times \frac{l_2}{2} + 2 \times 1.5 \]
\[= 24 + 2 \times \frac{12}{2} + 3 = 39 \text{ mm} \]

3. Design for rocker arm cross-section

The cross-section of the rocker arm is obtained by considering the bending of the sections just near the boss of fulcrum on both sides, such as section \(A - A \) and \(B - B \).

We know that maximum bending moment at \(A - A \) and \(B - B \).
\[M = 2460 \left(180 - \frac{60}{2} \right) = 369 \times 10^3 \text{ N-mm} \]

The rocker arm is of \(I \)-section. Let us assume the proportions as shown in Fig. 32.28. We know that section modulus,
\[Z = \frac{1}{12} \left[2.5 t (6t)^3 - 1.5 t (4t)^3 \right] \]
\[= \frac{37 t^4}{3 t} = 12.33 t^3 \]

\[\therefore \text{ Bending stress (} \sigma_b \text{)}, \]
\[70 = \frac{M}{Z} = \frac{369 \times 10^3}{12.33 t^3} = \frac{29.93 \times 10^3}{t^3} \]
\[t^3 = 29.93 \times 10^3 / 70 = 427.6 \text{ or } t = 7.5 \text{ say 8 mm} \]

\[\therefore \text{ Width of flange = } 2.5 t = 2.5 \times 8 = 20 \text{ mm Ans.} \]

\[\text{ Depth of web = } 4 t = 4 \times 8 = 32 \text{ mm Ans.} \]

\[\text{ and depth of the section = } 6 t = 6 \times 8 = 48 \text{ mm Ans.} \]

Normally thickness of the flange and web is constant throughout, whereas the width and depth is tapered.

4. Design for tappet screw

The adjustable tappet screw carries a compressive load of \(F_c = 2460 \text{ N} \). Assuming the screw is made of mild steel for which the compressive stress \((\sigma_c) \) may be taken as 50 MPA.
Let \(d_c \) = Core diameter of the tappet screw.

We know that the load on the tappet screw \((F_e)\),

\[
2460 = \frac{\pi}{4} (d_e)^2 \sigma_e = \frac{\pi}{4} (d_e)^2 50 = 39.3 \,(d_e)^2
\]

\[
(d_e)^2 = \frac{2460}{39.3} = 62.6 \quad \text{or} \quad d_e = 7.9 \text{ say } 8 \text{ mm}
\]

and outer or nominal diameter of the screw,

\[
d = \frac{d_e}{0.84} = \frac{8}{0.84} = 9.52 \text{ say } 10 \text{ mm Ans.}
\]

We shall use 10 mm stud and it is provided with a lock nut. The diameter of the circular end of the arm \((D_3)\) and its depth \((t_4)\) is taken as twice the diameter of stud.

\[
D_3 = 2 \times 10 = 20 \text{ mm Ans.}
\]

and

\[
t_4 = 2 \times 10 = 20 \text{ mm Ans.}
\]

5. Design for valve spring

First of all, let us find the total load on the valve spring.

We know that initial load on the spring, \(W_1 \) = Initial spring force \((F_s)\) = 96.6 N ...(Already calculated)

and load at full lift,

\[
W_2 = \text{Full valve lift} \times \text{Stiffiness of spring} \,(s)
\]

\[
= 25 \times 10 = 250 \text{ N}
\]

\. Total load on the spring,

\[
W = W_1 + W_2 = 96.6 + 250 = 346.6 \text{ N}
\]

Now let us find the various dimensions for the valve spring, as discussed below:

(a) Mean diameter of spring coil

Let \(D \) = Mean diameter of the spring coil, and \(d \) = Diameter of the spring wire.

We know that Wahl’s stress factor,

\[
K = \frac{4C - 1}{4C - 4} + \frac{0.615}{C} = \frac{4 \times 8 - 1}{4 \times 8 - 4} + \frac{0.615}{8} = 1.184
\]

\. Mean diameter of the spring coil,

\[
D = C \cdot d = 8 \times 4.47 = 35.76 \text{ mm Ans.}
\]

and outer diameter of the spring coil,

\[
D_o = D + d = 35.76 + 4.47 = 40.23 \text{ mm Ans.}
\]

(b) Number of turns of the coil

Let \(n \) = Number of active turns of the coil.

We know that maximum compression of the spring,

\[
\delta = \frac{8 \, W \cdot C^3 \cdot n}{G \cdot d} \quad \text{or} \quad \frac{\delta}{W} = \frac{8 \, C^3 \cdot n}{G \cdot d}
\]
Since the stiffness of the springs, \(s = \frac{W}{\delta} = 10 \text{ N/mm} \), therefore, \(\delta / W = 1/10 \). Taking \(G = 84 \times 10^3 \text{ MPa or N/mm}^2 \), we have

\[
\frac{1}{10} = \frac{8 \times 8^3 \times n}{84 \times 10^3 \times 4.47} = \frac{10.9 \times n}{10^3}
\]

\[
\therefore \quad n = \frac{10^3}{10.9 \times 10} = 9.17 \text{ say 10}
\]

For squared and ground ends, the total number of the turns,

\[
n' = n + 2 = 10 + 2 = 12 \text{ Ans.}
\]

(c) **Free length of the spring**

Since the compression produced under \(W_2 = 250 \text{ N} \) is 25 mm (i.e. equal to full valve lift), therefore, maximum compression produced (\(\delta_{\text{max}} \)) under the maximum load of \(W = 346.6 \text{ N} \) is

\[
\delta_{\text{max}} = \frac{25 \times 346.6}{250} = 34.66 \text{ mm}
\]

We know that free length of the spring,

\[
L_F = n' \cdot d + \delta_{\text{max}} + 0.15 \delta_{\text{max}}
\]

\[
= 12 \times 4.47 + 34.66 + 0.15 \times 34.66 = 93.5 \text{ mm Ans.}
\]

(d) **Pitch of the coil**

We know that pitch of the coil

\[
= \frac{\text{Free length}}{n' - 1} = \frac{93.5}{12 - 1} = 8.5 \text{ mm Ans.}
\]

Example 32.8. Design the various components of the valve gear mechanism for a horizontal diesel engine for the following data:

- Bore = 140 mm; Stroke = 270 mm; Power = 8.25 kW; Speed = 475 r.p.m.; Maximum gas pressure = 3.5 N/mm²
The valve opens 33° before outer dead centre and closes 1° after inner dead centre. It opens and closes with constant acceleration and decleration for each half of the lift. The length of the rocker arm on either side of the fulcrum is 150 mm and the included angle is 160°. The weight of the valve is 3 N.

Solution. Given: \(D = 140 \text{ mm} = 0.14 \text{ m} \); \(L = 270 \text{ mm} = 0.27 \text{ m} \); Power = 8.25 kW = 8250 W; \(N = 475 \text{ r.p.m} \); \(p = 3.5 \text{ N/mm}^2 \); \(l = 150 \text{ mm} = 0.15 \text{ m} \); \(\theta = 160^\circ \); \(w = 3 \text{ N} \)

First of all, let us find out dimensions of the valve as discussed below:

Size of the valve port
Let \(d_p \) = Diameter of the valve port, and
\[a_p = \text{Area of the valve port} = \frac{\pi}{4} (d_p)^2 \]

We know that area of the piston,
\[a = \frac{\pi}{4} D^2 = \frac{\pi}{4} (0.14)^2 = 0.0154 \text{ m}^2 \]
and mean velocity of the piston,
\[v = \frac{2LN}{60} = \frac{2 \times 0.27 \times 475}{60} = 4.275 \text{ m/s} \]

From Table 32.3, let us take the mean velocity of the gas through the port \((v_p) \) as 40 m/s. We know that
\[a_p \cdot v_p = a \cdot v \]

\[\frac{\pi}{4} (d_p)^2 \cdot 40 = 0.0154 \times 4.275 \text{ or } 31.42 (d_p)^2 = 0.0658 \]
\[(d_p)^2 = 0.0658 / 31.42 = 0.00209 \text{ or } d_p = 0.045 \text{ m} = 45 \text{ mm} \text{ Ans.} \]

Maximum lift of the valve
We know that maximum lift of the valve,
\[h = \frac{d_p}{4 \cos \alpha} = \frac{45}{4 \cos 45^\circ} = 15.9 \text{ say 16 mm} \text{ Ans.} \]

...(Taking \(\alpha = 45^\circ \))

Thickness of the valve head
We know that thickness of valve head,
\[t = k \cdot d_p \cdot \frac{p}{\sigma_b} = 0.42 \times 45 \sqrt{\frac{3.5}{56}} = 4.72 \text{ mm} \text{ Ans.} \]

...(Taking \(k = 0.42 \) and \(\sigma_b = 56 \text{ MPa} \))

Valve stem diameter
We know that valve stem diameter,
\[d_s = \frac{d_p}{8} + 6.35 \text{ mm} = \frac{45}{8} + 6.35 = 11.97 \text{ say 12 mm} \text{ Ans.} \]

Valve head diameter
The projected width of the valve seat, for a seat angle of 45°, may be empirically taken as 0.05 \(d_p \) to 0.07 \(d_p \). Let us take width of the valve seat as 0.06 \(d_p \) i.e. 0.06 \times 45 = 2.7 mm.
\[\therefore \text{Valve head diameter, } d_v = d_p + 2 \times 2.7 = 45 + 5.4 = 50.4 \text{ say 51 mm} \text{ Ans.} \]

Now let us calculate the various forces acting on the rocker arm of exhaust valve.
We know that gas load on the valve,

\[P_1 = \frac{\pi}{4} (d_e)^2 \rho_c = \frac{\pi}{4} (51)^2 0.4 = 817 \text{ N} \]

\[...(\text{Taking } \rho_c = 0.4 \text{ N/mm}^2) \]

Total load on the valve, considering the weight of the valve,

\[P = P_1 + w = 817 + 3 = 820 \text{ N} \]

Initial spring force, considering the weight of the valve,

\[F_s = \frac{\pi}{4} (d_e)^2 \rho_s - w = \frac{\pi}{4} (51)^2 0.025 - 3 = 48 \text{ N} \]

\[...(\text{Taking } \rho_s = 0.025 \text{ N/mm}^2) \]

The force due to acceleration \(F_a \) may be obtained as discussed below:

We know that total angle of crank for which the valve remains open

\[= 33 + 180 + 1 = 214^\circ \]

Since the engine is a four stroke engine, therefore the camshaft angle for which the valve remains open

\[= 214 / 2 = 107^\circ \]

Now, when the camshaft turns through \(107 / 2 = 53.5^\circ \), the valve lifts by a distance of 16 mm. It may be noted that the half of this period is occupied by constant acceleration and half by constant deceleration. The same process occurs when the value closes. Therefore, the period for constant acceleration is equal to camshaft rotation of \(53.5 / 2 = 26.75^\circ \) and during this time, the valve lifts through a distance of 8 mm.

We know that speed of camshaft

\[= \frac{N}{2} = \frac{475}{2} = 237.5 \text{ r.p.m.} \]

\[\therefore \text{Angle turned by the camshaft per second} \]

\[= \frac{237.5}{60} \times 360 = 1425 \text{ deg/s} \]

and time taken by the camshaft for constant acceleration,

\[t = \frac{26.75}{1425} = 0.0188 \text{ s} \]

Let \(a = \text{Acceleration of the valve.} \)

We know that \(s = u \cdot t + \frac{1}{2} a t^2 \) \[\ldots \text{(Equation of motion)} \]

\[8 = 0 \times t + \frac{1}{2} a (0.0188)^2 = 1.767 \times 10^{-4} a \]

\[\therefore a = \frac{8}{1.767 \times 10^{-4}} = 45274 \text{ mm/s}^2 = 45.274 \text{ m/s}^2 \]

and force due to valve acceleration, considering the weight of the valve,

\[F_a = m \cdot a + w = \frac{3}{9.81} \times 45.274 + 3 = 16.84 \text{ N} \]

\[...(\because m = w/g) \]

We know that the maximum load on the rocker arm for exhaust valve,

\[F_e = P + F_s + F_a = 820 + 48 + 16.84 = 884.84 \text{ say } 885 \text{ N} \]

Since the length of the two arms of the rocker are equal, therefore, load at the two ends of the arm are equal, \(i.e. F_e = F_c = 885 \text{ N} \).

We know that reaction at the fulcrum pin \(F_r \).
The rocker arm is shown in Fig. 32.29. We shall now design the various parts of rocker arm as discussed below:

![Diagram of rocker arm](image)

1. **Design of fulcrum pin**

 Let $d_1 = \text{Diameter of the fulcrum pin}$, and $l_1 = \text{Length of the fulcrum pin} = 1.25 \times d_1$... (Assume)

 Considering the bearing of the fulcrum pin. We know that load on the fulcrum pin (R_F),

 $1743 = d_1 \times l_1 \times p_b = d_1 \times 1.25 \times 5 = 6.25 \times (d_1)^2$

 ... (For ordinary lubrication, p_b is taken as 5 N/mm2)

 \therefore $(d_1)^2 = \frac{1743}{6.25} = 279$ or $d_1 = 16.7$ say 17 mm

 and $l_1 = 1.25 \times d_1 = 1.25 \times 17 = 21.25$ say 22 mm

 Now let us check the average shear stress induced in the pin. Since the pin in double shear, therefore, load on the fulcrum pin (R_F),

 $1743 = 2 \times \frac{\pi}{4} (d_1)^2 \tau = 2 \times \frac{\pi}{4} (17)^2 \tau = 454 \tau$

 \therefore $\tau = \frac{1743}{454} = 3.84 \text{ N/mm}^2$ or MPa

 This induced shear stress is quite safe.

 Now external diameter of the boss,

 $D_1 = 2d_1 = 2 \times 17 = 34 \text{ mm}$

 Assuming a phosphor bronze bush of 3 mm thick, the internal diameter of the hole in the lever,

 $d_h = d_1 + 2 \times 3 = 17 + 6 = 23 \text{ mm}$
Now, let us check the induced bending stress for the section of the boss at the fulcrum which is shown in Fig. 32.30.

Bending moment at this section,
\[M = F_e \times l = 885 \times 150 \text{ N-mm} \]
\[= 132,750 \text{ N-mm} \]

Section modulus,
\[Z = \frac{1}{12} \times \frac{22}{34/2} \times [(34)^3 - (23)^3] \]
\[= 2927 \text{ mm}^3 \]

\[\therefore \] Induced bending stress,
\[\sigma_b = \frac{M}{Z} = \frac{132,750}{2927} = 45.3 \text{ N/mm}^2 \text{ or MPa} \]

The induced bending stress is quite safe.

2. Design for forked end

Let
\[d_2 = \text{Diameter of the roller pin}, \text{ and} \]
\[l_2 = \text{Length of the roller pin} = 1.25 \times d_2 \text{ (Assume)} \]

Considering bearing of the roller pin. We know that load on the roller pin \((F_c) \),
\[885 = d_2 \times l_2 \times p_b = d_2 \times 1.25 \times d_2 \times 7 = 8.75 (d_2)^2 \]
\[\text{(Taking } p_b = 7 \text{ N/mm}^2) \]

\[\therefore \] \((d_2)^2 = \frac{885}{8.75} = 101.14 \text{ or } d_2 = 10.06 \text{ say 11 mm Ans.} \]
and
\[l_2 = 1.25 \times 11 = 13.75 \text{ say 14 mm Ans.} \]
Let us now check the roller pin for induced shearing stress. Since the pin is in double shear, therefore, load on the roller pin \(\left(F_c \right) \),

\[
885 = 2 \times \frac{\pi}{4} (d_2)^2 \tau = 2 \times \frac{\pi}{4} (11)^2 \tau = 190 \tau
\]

\[
\therefore \tau = \frac{885}{190} = 4.66 \text{ N/mm}^2 \text{ or MPa}
\]

This induced shear stress is quite safe.

The roller pin is fixed in the eye and thickness of each eye is taken as one-half the length of the roller pin.

\[
\therefore \text{Thickness of each eye, } t_2 = \frac{l_2}{2} = \frac{14}{2} = 7 \text{ mm}
\]

Let us now check the induced bending stress in the roller pin. The pin is neither simply supported in fork nor rigidly fixed at the end. Therefore, the common practice is to assume the load distribution as shown in Fig. 32.31.

The maximum bending moment will occur at \(Y-Y \). Neglecting the effect of clearance, we have

Maximum bending moment at \(Y-Y \):

\[
M = \frac{F_c}{2} \left(\frac{l_2}{2} + \frac{l_2}{3} \right) - \frac{F_c}{2} \times \frac{l_2}{4}
\]

\[
= \frac{5}{24} \times F_c \times l_2
\]

\[
= \frac{5}{24} \times 885 \times 14 = 2581 \text{ N-mm}
\]

and section modulus of the pin,

\[
Z = \frac{\pi}{32} (d_2)^3 = \frac{\pi}{32} (11)^3 = 131 \text{ mm}^3
\]

\[
\therefore \text{Bending stress induced in the pin}
\]

\[
= \frac{M}{Z} = \frac{2581}{131} = 19.7 \text{ N/mm}^2 \text{ or MPa}
\]

The bending stress induced in the pin is within permissible limits.

Since the radial thickness of eye \((t_3) \) is taken as \(d_2 / 2 \), therefore, overall diameter of the eye, \(D_2 = 2 \times d_2 = 2 \times 11 = 22 \text{ mm} \)

The outer diameter of the roller is taken slightly larger (at least 3 mm more) than the outer diameter of the eye. In the present case, 28 mm outer diameter of the roller will be sufficient.

Providing a clearance of 1.5 mm between the roller and the fork on either side of the roller, we have

\[
l_3 = l_2 + 2 \times \frac{l_2}{2} + 2 \times 1.5 = 14 + 2 \times \frac{7}{2} + 3 = 24 \text{ mm}
\]

3. Design for rocker arm cross-section

Since the engine is a slow speed engine, therefore, a rectangular section may be selected for the rocker arm. The cross-section of the rocker arm is obtained by considering the bending of the sections just near the boss of fulcrum on both sides, such as section \(A-A \) and \(B-B \).
Let \(t_1 \) = Thickness of the rocker arm which is uniform throughout.

\(B \) = Width or depth of the rocker arm which varies from boss diameter of fulcrum to outside diameter of the eye (for the forked end side) and from boss diameter of fulcrum to thickness \(t_3 \) (for the tappet or stud end side).

Now bending moment on section \(A - A \) and \(B - B \),

\[
M = 885 \left(150 - \frac{34}{2} \right) = 117705 \text{ N-mm}
\]

and section modulus at \(A - A \) and \(B - B \),

\[
Z = \frac{1}{6} \times t_1 \cdot B^2 = \frac{1}{6} \times t_1 \cdot (D_3)^2 = \frac{1}{6} \times t_1 \cdot (34)^2 = 193 \cdot t_1
\]

...(At sections \(A-A \) and \(B-B, B = D_3 \))

We know that bending stress (\(\sigma_b \)),

\[
70 = \frac{M}{Z} = \frac{117705}{193 \cdot t_1}
\]

...(Taking \(\sigma_b = 70 \text{ MPa or N/mm}^2 \))

\[
\therefore \quad t_1 = \frac{117705}{193 \cdot 70} = 8.7 \text{ say } 10 \text{ mm Ans.}
\]

4. Design for tappet screw

The adjustable tappet screw carries a compressive load of \(F_c = 885 \text{ N.} \) Assuming the screw to be made of mild steel for which the compressive stress (\(\sigma_c \)) may be taken as 50 MPa.

Let \(d_c \) = Core diameter of the tappet screw.

We know that load on the tappet screw (\(F_c \)),

\[
885 = \pi \left(\frac{d_c^2}{4} \right) \sigma_c = \pi \left(\frac{d_c^2}{4} \right) 50 = 39.3 (d_c)^2
\]

\[
\therefore \quad (d_c)^2 = \frac{885}{39.3} = 22.5 \text{ or } d_c = 4.74 \text{ say } 5 \text{ mm Ans.}
\]

and outer or nominal diameter of the screw,

\[
d = \frac{d_c}{0.84} = \frac{5}{0.8} = 6.25 \text{ say } 6.5 \text{ mm Ans.}
\]

We shall use 6.5 mm studs and it is provided with a lock nut. The diameter of the circular end of the arm (\(D_3 \)) and its depth (\(t_4 \)) is taken as twice the diameter of stud.

\[
\therefore \quad D_3 = 2 \times 6.5 = 13 \text{ mm Ans.}
\]

and \(t_4 = 2 \times 6.5 = 13 \text{ mm Ans.} \)

5. Design for valve spring

First of all, let us find the total load on the valve spring.

We know that initial load on the spring,

\[
W_1 = \text{Initial spring force (} F_s) = 48 \text{ N } ...(\text{Already calculated})
\]

and load at full lift,

\[
W_2 = \text{Full valve lift } \times \text{Stiffness of spring (} s) = 16 \times 8 = 128 \text{ N } ...(\text{Taking } s = 8 \text{ N/mm})
\]

\[
\therefore \quad \text{Total load on the spring, } W = W_1 + W_2 = 48 + 128 = 176 \text{ N}
\]

Now let us find the various dimensions for the valve spring as discussed below:

(a) Mean diameter of the spring coil

Let \(D \) = Mean diameter of the spring coil, and

\(d \) = Diameter of the spring wire.
We know that Wahl’s stress factor,
\[K = \frac{4C - 1}{4C - 4} + \frac{0.615}{C} = \frac{4 \times 6 - 1}{4 \times 6 - 4} + \frac{0.615}{6} = 1.2525 \]
\[(\text{Assuming } C = D/d = 6)\]

and maximum shear stress \((\tau) \),
\[420 = K \times \frac{8 WC}{\pi d^2} = 1.2525 \times \frac{8 \times 176 \times 6}{\pi d^2} = \frac{3368}{d^2} \]
\[\therefore \quad d^2 = 3368 / 420 = 8.02 \quad \text{or} \quad d = 2.83 \text{ mm} \]

The standard size of the wire is SWG 11 having a diameter \((d) = 2.946 \text{ mm} \) \textbf{Ans.}\n(see Table 22.2)
\[\therefore \quad \text{Mean diameter of spring coil,} \]
\[D = C \cdot d = 6 \times 2.946 = 17.676 \text{ mm} \quad \textbf{Ans.} \]

and outer diameter of the spring coil,
\[D_o = D + d = 17.676 + 2.946 = 20.622 \text{ mm} \quad \textbf{Ans.} \]

\(b \) Number of turns of the coil
Let \(n = \text{Number of turns of the coil}, \)
We know that maximum compression of the spring,
\[\delta = \frac{8 WC^3 \cdot n}{G \cdot d} \quad \text{or} \quad \delta = \frac{8 C^3 \cdot n}{G \cdot d} \]
Since the stiffness of the spring, \(s = W / \delta = 8 \text{ N/mm} \), therefore \(\delta / W = 1 / 8 \). Taking \(G = 84 \times 10^3 \text{ MPa} \) or \(\text{N/mm}^2 \), we have

\[
\frac{1}{8} = \frac{8 \times 6 \times n}{84 \times 10^3 \times 2.946} = 6.98 \times 10^3
\]

\[
n = \frac{10^3}{8} \times 6.98 = 17.9 \text{ say 18}
\]

For squared and ground ends, the total number of turns,

\[
n' = n + 2 = 18 + 2 = 20 \text{ Ans.}
\]

(c) **Free length of the spring**

Since the compression produced under \(W = 128 \text{ N} \) is 16 mm, therefore, maximum compression produced under the maximum load of \(W = 176 \text{ N} \) is

\[
\delta_{\text{max}} = \frac{16}{128} \times 176 = 22 \text{ mm}
\]

We know that free length of the spring,

\[
L_F = n' \times d + \delta_{\text{max}} + 0.15 \delta_{\text{max}}
\]

\[
= 20 \times 2.946 + 22 + 0.15 \times 22 = 84.22 \text{ say 85 mm Ans.}
\]

(d) **Pitch of the coil**

We know that pitch of the coil

\[
\frac{\text{Free length}}{n' - 1} = \frac{85}{20 - 1} = 4.47 \text{ mm Ans.}
\]

Design of cam

The cam is forged as one piece with the camshaft. It is designed as discussed below:

The diameter of camshaft \(D' \) is taken empirically as

\[
D' = 0.16 \times \text{Cylinder bore} + 12.7 \text{ mm}
\]

\[
= 0.16 \times 140 + 12.7 = 35.1 \text{ say 36 mm}
\]

The base circle diameter is about 3 mm greater than the camshaft diameter.

\[
\therefore \text{Base circle diameter} = 36 + 3 = 39 \text{ say 40 mm}
\]

The width of cam is taken equal to the width of roller, \(i.e. \) 14 mm.

The width of cam \(w' \) is also taken empirically as

\[
W' = 0.09 \times \text{Cylinder bore} + 6 \text{ mm} = 0.09 \times 140 + 6 = 18.6 \text{ mm}
\]

Let us take the width of cam as 18 mm.

Now the cam is drawn according to the procedure given below:

First of all, the displacement diagram, as shown in Fig. 32.32, is drawn as discussed in the following steps:

1. Draw a horizontal line \(ANM \) such that \(AN \) represents the angular displacement when valve opens \(i.e. 53.5^\circ \) to some suitable scale. The line \(NM \) represents the angular displacement of the cam when valve closes \(i.e. 53.5^\circ \).
2. Divide \(AN \) and \(NM \) into any number of equal even parts (say six).
3. Draw vertical lines through points 0, 1, 2, 3 etc. equal to the lift of valve \(i.e. \) 16 mm.
4. Divide the vertical lines \(3 - f \) and \(3' - f' \) into six equal parts as shown by points \(a, b, c \ldots \) and \(a', b', c' \ldots \) in Fig. 32.32.
5. Since the valve moves with equal uniform acceleration and declaration for each half of the lift, therefore, valve displacement diagram for opening and closing of valve consists of double parabola.

* For complete details, refer Authors’ popular book on ‘Theory of Machines’.
6. Join \(Aa, Ab, Ac \) intersecting the vertical lines 1, 2, 3 at \(B, C, D \) respectively.

7. Join the points \(B, C, D \) with a smooth curve. This is the required parabola for the half of valve opening. Similarly other curves may be drawn as shown in Fig. 32.32.

8. The curve \(A, B, C, ..., G, K, L, M \) is the required displacement diagram.

Now the profile of the cam, as shown in Fig. 32.32, is drawn as discussed in the following steps:

1. Draw a base circle with centre \(O \) and diameter equal 40 mm (radius = 40/2 = 20 mm)

2. Draw a prime circle with centre \(O \) and radius, \(OA = \text{Min. radius of cam} + \frac{1}{2} \text{Diameter of roller} = 20 + \frac{1}{2} \times 28 \)

\[
= 20 + 14 = 34 \text{ mm}
\]

3. Draw angle \(AOG = 53.5^\circ \) to represent opening of valve and angle \(GOM = 53.5^\circ \) to represent closing of valve.

4. Divide the angular displacement of the cam during opening and closing of the valve (i.e. angle \(AOG \) and \(GOM \)) into same number of equal even parts as in displacement diagram.

5. Join the points 1, 2, 3, etc. with the centre \(O \) and produce the lines beyond prime circle as shown in Fig. 32.33.

6. Set off points \(1B, 2C, 3D, \) etc. equal to the displacements from displacement diagram.

7. Join the points \(A, B, C, ...L, M, A \). The curve drawn through these points is known as pitch curve.

8. From the points \(A, B, C, ...K, L \), draw circles of radius equal to the radius of the roller.
9. Join the bottoms of the circle with a smooth curve as shown in Fig. 32.33. This is the required profile of cam.

EXERCISES

1. A four stroke internal combustion engine has the following specifications:
 Brake power = 7.5 kW; Speed = 1000 r.p.m.; Indicated mean effective pressure = 0.35 N/mm²; Maximum gas pressure = 3.5 N/mm²; Mechanical efficiency = 80%.
 Determine: 1. The dimensions of the cylinder, if the length of stroke is 1.4 times the bore of the cylinder; 2. Wall thickness of the cylinder, if the hoop stress is 35 MPa; 3. Thickness of the cylinder head and the size of studs when the permissible stresses for the cylinder head and stud materials are 45 MPa and 65 MPa respectively.

2. Design a cast iron trunk type piston for a single acting four stroke engine developing 75 kW per cylinder when running at 600 r.p.m. The other available data is as follows:
 Maximum gas pressure = 4.8 N/mm²; Indicated mean effective pressure = 0.65 N/mm²; Mechanical efficiency = 95%; Radius of crank = 110 mm; Fuel consumption = 0.3 kg/BP/hr; Calorific value of fuel (higher) = 44 x 10³kJ/kg; Difference of temperatures at the centre and edges of the piston head = 200°C; Allowable stress for the material of the piston = 33.5 MPa; Allowable stress for the material of the piston rings and gudgeon pin = 80 MPa; Allowable bearing pressure on the piston barrel = 0.4 N/mm² and allowable bearing pressure on the gudgeon pin = 17 N/mm².

3. Design a piston for a four stroke diesel engine consuming 0.3 kg of fuel per kW of power per hour and produces a brake mean effective pressure of the 0.7 N/mm². The maximum gas pressure inside the cylinder is 5 N/mm² at a speed of 3500 r.p.m. The cylinder diameter is required to be 300 mm with stroke 1.5 times the diameter. The piston may have 4 compression rings and an oil ring. The following data can be used for design:
Higher calorific value of fuel = 46×10^3kJ/kg; Temperature at the piston centre = 700 K; Temperature at the piston edge = 475 K; Heat conductivity factor = 46.6 W/m/K; Heat conducted through top = 5% of heat produced; Permissible tensile strength for the material of piston = 27 N/mm²; Pressure between rings and piston = 0.04 N/mm²; Permissible tensile stress in rings = 80 N/mm²; Permissible pressure on piston barrel = 0.4 N/mm²; Permissible pressure on piston pin = 15 N/mm²; Permissible stress in piston pin = 85 N/mm².

Any other data required for the design may be assumed.

4. Determine the dimensions of an I-section connecting rod for a petrol engine from the following data:
 - Diameter of the piston = 110 mm;
 - Mass of the reciprocating parts = 2 kg;
 - Length of the connecting rod from centre to centre = 325 mm;
 - Stroke length = 150 mm;
 - R.P.M. = 1500 with possible overspeed of 2500;
 - Compression ratio = 4 : 1;
 - Maximum explosion pressure = 2.5 N/mm².

5. The following particulars refer to a four stroke cycle diesel engine:
 - Cylinder bore = 150 mm;
 - Stroke = 187.5 mm;
 - R.P.M. = 1200;
 - Maximum gas pressure = 5.6 N/mm²;
 - Mass of reciprocating parts = 1.75 kg.
 1. The dimensions of an I-section connecting rod of forged steel with an elastic limit compressive stress of 350 MPa. The ratio of the length of connecting rod to the length of crank is 4 and the factor of safety may be taken as 5;
 2. The wrist pin and crankpin dimensions on the basis of bearing pressures of 10 N/mm² and 6.5 N/mm² of the projected area respectively; and
 3. The dimensions of the small and big ends of the connecting rods, including the size of the securing bolts of the crankpin end. Assume that the allowable stress in the bolts, is not to exceed 35 N/mm².

Draw dimensioned sketches of the connecting rod showing the provisions for lubrication.

6. A connecting rod is required to be designed for a high speed, four stroke I.C. engine. The following data are available.
 - Diameter of piston = 88 mm;
 - Mass of reciprocating parts = 1.6 kg;
 - Length of connecting rod (centre to centre) = 300 mm;
 - Stroke = 125 mm;
 - R.P.M. = 2200 (when developing 50 kW);
 - Possible overspeed = 3000 r.p.m.;
 - Compression ratio = 6.8 : 1 (approximately);
 - Probable maximum explosion pressure (assumed shortly after dead centre, say at about 3°) = 3.5 N/mm².

Draw fully dimensioned drawings of the connecting rod showing the provision for the lubrication.

7. Design a plain carbon steel centre crankshaft for a single acting four stroke, single cylinder engine for the following data:
 - Piston diameter = 250 mm;
 - Stroke = 400 mm;
 - Maximum combustion pressure = 2.5 N/mm²;
 - Weight of the flywheel = 16 kN;
 - Total belt pull = 3 N;
 - Length of connecting rod = 950 mm.

When the crank has turned through 30° from top dead centre, the pressure on the piston is 1 N/mm² and the torque on the crank is maximum.

Any other data required for the design may be assumed.

8. Design a side crankshaft for a 500 mm × 600 mm gas engine. The weight of the flywheel is 80 kN and the explosion pressure is 2.5 N/mm². The gas pressure at maximum torque is 0.9 N/mm² when the crank angle is 30°. The connecting rod is 4.5 times the crank radius.

Any other data required for the design may be assumed.

9. Design a rocker arm of I-section made of cast steel for operating an exhaust valve of a gas engine. The effective length of the rocker arm is 250 mm and the angle between the arm is 135°. The exhaust valve is 80 mm in diameter and the gas pressure when the valve begins to open is 0.4 N/mm². The greatest suction pressure is 0.03 N/mm² below atmospheric. The initial load may be assumed as 0.05 N/mm² of valve area and the valve inertia and friction losses as 120 N. The ultimate strength of cast steel is 750 MPa. The allowable bearing pressure is 8 N/mm² and the permissible stress in the material is 72 MPa.

Design the various components of a valve gear mechanism for a horizontal diesel engine having the following specifications:
Brake power = 10 kW; Bore = 140 mm; Stroke = 270 mm; Speed = 500 r.p.m. and maximum gas pressure = 3.5 N/mm².

The valve open 30° before top dead centre and closes 2° after bottom dead centre. It opens and closes with constant acceleration and deceleration for each half of the lift. The length of the rocker arm on either side of the fulcrum is 150 mm and the included angle is 135°. The mass of the valve is 0.3 kg.

QUESTIONS

1. Explain the various types of cylinder liners.
2. Discuss the design of piston for an internal combustion engine.
3. State the function of the following for an internal combustion engine piston:
 - (a) Ribs
 - (b) Piston rings
 - (c) Piston skirt
 - (d) Piston pin
4. What is the function of a connecting rod of an internal combustion engine?
5. Explain the various stresses induced in the connecting rod.
6. Under what force, the big end bolts and caps are designed?
7. Explain the various types of crankshafts.
8. At what angle of the crank, the twisting moment is maximum in the crankshaft?
9. What are the methods and materials used in the manufacture of crankshafts?
10. Sketch a valve gear mechanism of an internal combustion engine and label its various parts.
11. Discuss the materials commonly used for making the valve of an I.C. engine.
12. Why the area of the inlet valve port is made larger than the area of exhaust valve port?
OBJECTIVE TYPE QUESTIONS

1. The cylinders are usually made of
 (a) cast iron or cast steel (b) aluminium
 (c) stainless steel (d) copper

2. The length of the cylinder is usually taken as
 (a) equal to the length of piston (b) equal to the length of stroke
 (c) equal to the cylinder bore (d) 1.5 times the length of stroke

3. The skirt of piston
 (a) is used to withstand the pressure of gas in the cylinder
 (b) acts as a bearing for the side thrust of the connecting rod
 (c) is used to seal the cylinder in order to prevent leakage of the gas past the piston
 (d) none of the above

4. The side thrust on the cylinder liner is usually taken as of the maximum gas load on the piston.
 (a) 1/5 (b) 1/8
 (c) 1/10 (d) 1/5

5. The length of the piston usually varies between
 (a) D and $1.5D$ (b) $1.5D$ and $2D$
 (c) $2D$ and $2.5D$ (d) $2.5D$ and $3D$
 where D = Diameter of the piston.

6. In designing a connecting rod, it is considered like for buckling about X-axis.
 (a) both ends fixed
 (b) both ends hinged
 (c) one end fixed and the other end hinged
 (d) one end fixed and the other end free

7. Which of the following statement is wrong for a connecting rod?
 (a) The connecting rod will be equally strong in buckling about X-axis, if $I_{xx} = 4I_{yy}$
 (b) If $I_{xx} > 4I_{yy}$, the buckling will occur about X-axis.
 (c) If $I_{xx} < 4I_{yy}$, the buckling will occur about X-axis.
 (d) The most suitable section for the connecting rod is T-section.

8. The crankshaft in an internal combustion engine
 (a) is a disc which reciprocates in a cylinder
 (b) is used to retain the working fluid and to guide the piston
 (c) converts reciprocating motion of the piston into rotary motion and vice versa
 (d) none of the above

9. The rocker arm is used to actuate the inlet and exhaust valves motion as directed by the
 (a) cam and follower (b) crank
 (c) crankshaft (d) none of these

10. For high speed engines, a rocker arm of.......... should be used.
 (a) rectangular section (b) I-section
 (c) T-section (d) circular

ANSWERS

1. (a) 2. (d) 3. (b) 4. (c) 5. (a)
6. (b) 7. (d) 8. (c) 9. (a) 10. (b)