The specific Static Rotor Work Yp

Specific Static rotor work

$$Y_P = \frac{1}{\rho} (P_3 - P_0)$$

Where P_0 , P_3 = static pressures at points 0,3 $(P_0 - P_3)$ = static pressure difference of the rotor ρ = density, in case of a compressible medium average of ρ_3 and ρ_3 .

Yp can be calculated from the energy difference of the flow medium between o and 3

$$Y_{blade} \mp Z_u = \frac{P_3 - P_0}{\rho} + \frac{C_3^2 - C_0^2}{2}$$

Where

$$Y_{blade} = U_2 C_{3U} - U_1 C_{0U} = U_2 C_3 \cos \alpha_3 - U_1 C_0 \cos \alpha_0$$

Applying the cos-theorem of a triangle

$$Y_{blade} = \frac{1}{2} \left(C_3^2 + U_3^2 - W_3^2 - C_0^2 - U_0^2 + W_0^2 \right)$$
$$= \frac{1}{2} \left(C_3^2 - C_0^2 + U_3^2 - U_0^2 + W_0^2 - W_3^2 \right)$$

It follows

$$Y_{P} = Y_{blade} - \frac{C_{3}^{2} - C_{0}^{2}}{2} \mp Z_{u} = \frac{1}{2} \left(U_{3}^{2} - U_{0}^{2} + W_{0}^{2} - W_{3}^{2} \right) \mp Z_{u}$$

Bernoulli Equation of the Relative Flow

Neglecting the hydraulic loss, i.e. Z_u = 0,

$$Y_{P} = \frac{P_{3} - P_{0}}{\rho} = \left(\frac{W_{0}^{2}}{2} - \frac{U_{1}^{2}}{2}\right) - \left(\frac{W_{3}^{2}}{2} - \frac{U_{2}^{2}}{2}\right)$$

It follows

$$\frac{P_3}{\rho} + \frac{W_3^2}{2} - \frac{U_2^2}{2} = \frac{P_0}{\rho} + \frac{W_0^2}{2} - \frac{U_1^2}{2}$$

 The above formula applies to any points along the flow line passing the vane channel

$$\frac{P}{\rho} + \frac{W^2}{2} - \frac{U^2}{2} = const$$

Bernoulli Equation of the Relative Flow

Impulse and Reaction Type of Turbomachines

- Considering Y_P, the turbomachine can be grouped into:
- A. Turbomachines without pressure difference in front of and beyond the rotor, i.e $(P_3-P_0) = 0$ or $Y_p = 0$ "Impulse" type of Turbomachines
- B. Turbomachines with pressure difference in front and beyond the rotor, i.e. $(P_3-P_0) \neq 0 Y_p > 0$ Reaction type of Turbomachines

For impulse turbines

- The total head of the incoming fluid is converted into a large velocity head at the exit of the supply nozzle.
- Both the pressure drop across the bucket (blade) and the change in relative speed of the fluid across the bucket are negligible.
- The space surrounding the rotor is not completely filled with fluid.
- The individual jets of fluid striking the buckets that generates the torque.

❖For reaction turbines

- There is both a pressure drop and a fluid relative speed change across the rotor.
- Guide vanes act as nozzle to accelerate the flow and turn it in the appropriate direction as the fluid enters the rotor.
- Part of the pressure drop occurs across the guide vanes and part occurs across the rotor,

Summary

Impulse turbines: High-head, low flowrate devices.

Reaction turbines: Low-head, high-flowrate devices.

Equal Pressure or Impulse Type of Turbomachines

$$P_3 - P_0 = 0$$
 and $Y_P = 0$

Example a. Single-Stage Steam Turbine

- The entirely available pressure difference (P₃-P₀) is converted into velocity while the flow passes through the stationary guide vanes
- The velocity existing in the clearance between the stationary guide vanes and the rotor blades is the highest one which can be obtained from the available pressure difference, i.e. $C_3 = C_{3max \, attainable}$
- The kinetic energy of the flow entering the rotor is reduced while the flow passes the blade channels, the absolute velocity is reduced from C_3 to C_0 .
- The specific static rotor work Yp is (for axial flow $U_1=U_2=U$)

$$Y_{P} = \frac{1}{2} \left(W_{0}^{2} - W_{3}^{2} \right) + Z_{u}$$

- Neglecting the hydraulic lose Z_u of the rotor, it follows because $Y_p = 0$.
- Considering the loss: $W_0 = \varphi W_3$
- Where the velocity coefficient ϕ takes in to account the drop in kinetic energy due to Z₁₁; Φ <1.
- The condition $W_0 \approx W_3$ demands rotor blades of the 'hookform' type, i.e. $\beta_2 > 90^{\circ}$.

Blades of a constant-pressure steam or Gas turbine. 'a' is the channel width at all points approximately equal

- If blade has uniform thickness, the flow while passing the channel is first decelerated then accelerated.
- Such change in the flow velocity is undesirable as it leads to unnecessary losses.
- In order to obtain W≈ const. along the vane channel the blade be designed with strong profiling; however, such blades are costly

 The specific work Y_{blade} of an impulse steam turbine stage as for a given velocity U₂ proportional to the velocity C₃

$$Y_{blade} = U_2 C_{3U} = U_2 C_3 \cos \alpha_3 \propto C_3 = C_{3\text{max}-att.}$$
 For $\alpha_0 = 90^{\circ}$

- Steam turbines are designed with approximately the same angle α_3 =15 to 20 degrees.
- As C_3 of impulse team turbines has highest possible value $C_{3\text{max-att.}}$ The spec. work Y_{blade} of these turbines has highest value

$$Y_{blade-impulse\ t.} = Y_{blade-max.att.}$$
 for a given U_2

- The peripheral velocity U_2 will be lowest for a given Y_{blade} if the turbine is designed as impulse turbine
- Impulse turbines are slow running turbines

Over-Pressure or Reaction Type of Turbomachine

Example: Single-Stage Reaction Steam Turbine

- While the flow passes through the channels of stationary vanes (also called Guide Blades), only a portion of the available pressure difference (P_D-P_S) is converted into velocity
- Thus $C_3 < C_{3max-attainable}$ and, hence, the spec. work $Y_{blade} = U_2 C_{3U}$ of the reaction turbine is smaller that that of the impulse turbine if the same velocity U_2 is assumed
- The velocity U of reaction turbines has to be higher than that of impulse turbines if the same Y_{blade} is to be obtained.
- Reaction turbines may be classified as fast running turbomachines.

- β_1 should be small but not too small as leads to strong whirls in the discharge flow.
- The angle β_2 of reaction turbines is $\beta_2 \le 90^0$ and, thus, differs from that of impulse turbines.
- The blade does not have the hook form. As the relative velocity increases from W₃ to W₀, the channel width decreases and no profile is necessary in order to obtain equal channel width.
- Reaction turbine has more stages because of the lower Y_{blade} of its single stage.

Degree of Reaction

- In case of the reaction turbine, the driving force at the rotor is due to change of direction (impulse) and magnitude (reaction) of the relative velocity W.
- A reaction effect, i.e. a change of the magnitude of the relative velocity W in case of the axial-flow machine, is only possible if a pressure difference exists between the entrance and discharge side of the rotor.
- Quota of reaction acting is found by comparing total energy Y_p with pressure rotor energy (Y_p) .

$$Degree of \ reaction = \frac{Spec. Static \ rotor \ work}{Spec. work \ between \ inlet \ and \ outlet(of \ the \ stage)} = \frac{Y_P}{Y}$$

impulse machine:
$$Y_P = 0$$
 and $R = 0$

reaction machine: $Y_P > 0$ and 0 < R < 1 $(R \ge 1 \text{ in some special cases})$

The reaction effect exists also in case of radial or mixed flow rotors where $U_1 \neq U_2$ even for $|W_0| = |W_3|$ as shown by the equation

$$Y_{P} = \frac{\frac{1}{2} \left(U_{2}^{2} - U_{1}^{2} + W_{0}^{2} - W_{3}^{2} \right) \mp Z_{u}}{Y} = \frac{\frac{1}{2} \left(U_{2}^{2} - U_{1}^{2} \right) \mp Z_{u}}{Y} \neq 0$$

Blade Speed Ratio

 The blade speed ratio as defined below is widely used in the calculation of turbines especially of steam turbines.

Blade Speed Ratio =
$$\frac{U}{C_Y} = \frac{U}{\sqrt{2Y}}$$

• $C_Y = \sqrt{2Y}$ is the velocity which could be obtained if the spec. work Y is converted without losses completely into velocity.

$$C_{Y} \approx \frac{C_{2}}{\varphi \sqrt{1 - R}}$$

Where Φ is velocity coefficient of guide vanes (referring to velocity losses)

After some derivation

$$\frac{U}{C_Y} = \frac{\eta_h}{2\varphi \cos \alpha_2} \frac{1}{\sqrt{1-R}}$$

• Assuming the following data: $\eta_h = 0.85; \varphi = 0.98; \alpha_2 = 30^\circ$.

$$\frac{\eta_h}{2\varphi\cos\alpha_2} \approx 1$$

The blade speed ratio has the value

$$\left(\frac{U}{C_Y}\right)_{R=0} = \frac{1}{2} \quad for \quad R = 0$$

$$\left(\frac{U}{C_Y}\right)_{R=0.5} \approx \frac{1}{\sqrt{2}} \quad for \quad R = 0.5$$

 The following values of the blade speed ratio re obtained with actual machines:

impuse steam turbines
$$\left(\frac{U}{C_Y}\right)_{R=0} = \underbrace{0.35}_{Cheap \ Design.small \ power} to \underbrace{0.47}_{high \ quality \ design \ l \ arg \ e \ power} = k'$$

$$reaction \ steam \ turbines \left(\frac{U}{C_Y}\right)_{R>0} \approx \frac{k'}{\sqrt{1-R}} = \frac{0.35 \ to \ 0.47}{\sqrt{1-R}}$$

$$Pelton \ Turbines \left(\frac{U}{C_Y}\right)_{R=0} = 0.44 \ to \ 0.47$$

(57) Calculation of Mean Diameter and Peripheral Velocity using the Blade Speed Ratio

The Vane Angle β_2

• Three different axial-flow vanes, namely form A, B, C for which U_2 , C_{2m} and β_1 are the same but the angle β_2 differ

- B_2 is chosen for the form A as $\beta_2 < 90^\circ$, for the form B as $\beta_2 = 90^\circ$ and for the form C as $\beta_2 > 90^\circ$.
- A similar sketch for three different radial-flow vanes with β_2 <90° (form a), β_2 =90° (form b) and β_2 =90° (form c) is given below.

- In case of the radial-flow machine the vanes of the different forms are called
 - Vane form a as 'backward-curved' vanes
 - Vanes form b, c as 'forward-curved' vanes

The following relation exists between β_2 and U_2

$$\begin{split} Y_{blade} &= U_{2}C_{3U} \ and \ Y_{blade^{\infty}} = U_{2}C_{2u} \\ where, C_{2u} &= U_{2} - W_{2U} = U_{2} - C_{2m} \cot \beta_{2}, \\ Y_{blade^{\infty}} &= U_{2} \left(U_{2} - C_{2m} \cot \beta_{2} \right) and \ it \ follows \\ U_{2} &= \frac{C_{2m}}{2 \tan \beta_{2}} + \sqrt{\left(\frac{C_{2m}}{2 \tan \beta_{2}} \right)^{2} + Y_{blade^{\infty}}} \end{split}$$

$$\Leftrightarrow$$
 Case: $\alpha_0 \neq 90^0$

$$U_{2} = \frac{C_{2m}}{2 \tan \beta_{2}} + \sqrt{\left(\frac{C_{2m}}{2 \tan \beta_{2}}\right)^{2} + Y_{blade^{\infty}} + U_{1}C_{OU}}$$

- The necessary peripheral velocity U_2 for a given $Y_{blade\infty}$ can be determined by these equation if the vane angle β_2 is assumed.
- A large β_2 decreases U_2 and the size of the rotor decreases, too, if the speed n is not altered:

Ranges of β_2 with different types of turbomachines

Shape Number, Specific Speed

- The shape of the rotor is determined by the three related values n, Y and V as long as the vane angle β₂ is unchanged.
- 1. Effect of Increase in speed n on the shape of the rotor (with unchanged β_2 , V and Y)
- The unchanged Y demands the same velocity triangle at 2.

$$Y \propto Y_{blade} \propto Y_{blade\infty} = U_2 C_{2U}$$

The unchanged velocity triangle can be obtained for increased speed n but same velocity U as demanded by the unchanged velocity triangle only at a smaller outer diam.

2. Effect of Increase in V on the shape of the slow running rotor (with unchanged β_2 , n, D_2 , and Y)

- The larger volume V can be obtained only by <u>increasing the</u> <u>channel width and the eye dia. Ds</u>
- ❖ The meridian component of the velocity must remain unchanged because of the unchanged Y with same n and D₂
- Demanding and unchanged velocity triangle at 2.

- The rotor shape is a function of n, V and Y.
- Shape number (N_{shape}) is a dimensionless number and is used to define the shape of the rotor by relating n, V and Y.

$$N_{shape}[1] = \left[n\frac{1}{s}\right]^{\alpha} \left[V\frac{m^{3}}{s}\right]^{\beta} \left[Y\frac{m^{2}}{s^{2}}\right]^{\gamma}, assume \ \alpha = 1;$$

$$1 = \left[\frac{1}{s}\right]^{1} \left[\frac{m^{3}}{s}\right]^{\beta} \left[\frac{m^{2}}{s^{2}}\right]^{\gamma} = m^{0}s^{0}$$

It follows

m:
$$3\beta+2\gamma=0$$

S: $-1-\beta-2\gamma=0$
 $-1+2\beta=0$ or $\beta=\frac{1}{2}$
thus $2\gamma=\frac{3}{2}$ or $\gamma=\frac{3}{4}$

nus,
$$N_{shape}[1] = n^1 V^{1/2} Y^{3/4} = \frac{n\sqrt{V}}{Y^{3/4}}$$

$$n_{sh} = 1000N_{shape}$$

A relation which is based on the head H instead on the spec.
 work Y is called *Specific Speed*.

$$n_q = \frac{n\sqrt{V}}{H^{3/4}}$$

- Where the values has a unit of n(rpm), V(m³/s) and H(m).
- n_q is not dimensionless for metric system n_q has the following unit

$$n_q = 9.81^{3/4} \left[\frac{m}{s^2} \right]^{3/4} \frac{60s}{1 \min} N_{shape} = 333 N_{shape} \left[\frac{m^{3/4}}{\sqrt{s.\min}} \right]$$

 For water turbines a specific speed derived from n, H and N is often used.

$$n_s = \frac{n\sqrt{N}}{H^{5/4}}$$

Values of N _{shape} , n _q and n _s :			
	1000N _{shape}	n _q	n _s
Slow- running rotor	33 to 120	11 to 38	40 to 140
Medium-running rotor	120 to 250	38 to 82	140 to 300
Fast -running rotor	250 to 500	82 to 164	300 to 600
axial-flow rotor	330 to 1500	110 to 500	400 to 1800